Intest Res.  2018 Apr;16(2):209-215. 10.5217/ir.2018.16.2.209.

Why is it so difficult to evaluate faecal microbiota transplantation as a treatment for ulcerative colitis?

Affiliations
  • 1St Catherine's College, University of Oxford, Oxford, UK.
  • 2Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, John Radcliffe Hospital, Oxford, UK. simon.travis@ndm.ox.ac.uk

Abstract

Faecal microbiota transplantation (FMT) has recently re-emerged as a viable therapeutic option for colonic disorders. Its efficacy has been proved in the treatment of Clostridium difficile infection which has encouraged research into the use of FMT for other disorders involving gut dysbiosis, such as ulcerative colitis (UC), a chronic inflammatory disease characterized by relapsing and remitting colonic inflammation. Although the FMT protocol for C. difficile treatment is well established, there are numerous additional factors to consider when applying FMT to treat inflammatory diseases. Various studies have attempted to address these factors but technical inconsistency between reports has resulted in a failure to achieve clinically significant findings. Case reports of FMT in UC have shown favorable outcomes yet demonstrating these effects on a larger scale has proved difficult. The following review aims to explore these issues and to analyze why they may be hindering the progression of FMT therapy in UC.

Keyword

Colitis, ulcerative; Fecal microbiota transplantation

MeSH Terms

Clostridium difficile
Colitis, Ulcerative*
Colon
Dysbiosis
Fecal Microbiota Transplantation
Inflammation
Microbiota*
Ulcer*

Cited by  2 articles

Efficacy of fecal microbiota therapy in steroid dependent ulcerative colitis: a real world intention-to-treat analysis
Ajit Sood, Ramit Mahajan, Garima Juyal, Vandana Midha, Charanpreet Singh Grewal, Varun Mehta, Arshdeep Singh, Mohan C Joshi, Vikram Narang, Kirandeep Kaur, Hasrat Sidhu
Intest Res. 2019;17(1):78-86.    doi: 10.5217/ir.2018.00089.

Multi-session fecal microbiota transplantation using colonoscopy has favorable outcomes for the treatment of steroid-dependent ulcerative colitis
Young-Seok Cho
Intest Res. 2019;17(1):6-8.    doi: 10.5217/ir.2018.00171.


Reference

1. Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977; 31:107–133. PMID: 334036.
Article
2. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012; 13:701–712. PMID: 22968153.
Article
3. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014; 157:121–141. PMID: 24679531.
Article
4. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444:1027–1031. PMID: 17183312.
Article
5. Sartor RB. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology. 2004; 126:1620–1633. PMID: 15168372.
Article
6. Preidis GA, Versalovic J. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology. 2009; 136:2015–2031. PMID: 19462507.
Article
7. Cammarota G, Ianiro G, Tilg H, et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017; 66:569–580. PMID: 28087657.
Article
8. Khoruts A, Sadowsky MJ. Understanding the mechanisms of faecal microbiota transplantation. Nat Rev Gastroenterol Hepatol. 2016; 13:508–516. PMID: 27329806.
Article
9. Ge H. Zhou Hou Bei Ji Fang. Tianjin: Tianjin Science & Technology Press;2000.
10. Eiseman B, Silen W, Bascom GS, Kauvar AJ. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery. 1958; 44:854–859. PMID: 13592638.
11. Kelly CP, LaMont JT. Clostridium difficile infection. Annu Rev Med. 1998; 49:375–390. PMID: 9509270.
12. Depestel DD, Aronoff DM. Epidemiology of Clostridium difficile infection. J Pharm Pract. 2013; 26:464–475. PMID: 24064435.
13. Bakken JS, Borody T, Brandt LJ, et al. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin Gastroenterol Hepatol. 2011; 9:1044–1049. PMID: 21871249.
Article
14. van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013; 368:407–415. PMID: 23323867.
Article
15. Ford AC, Moayyedi P, Hanauer SB. Ulcerative colitis. BMJ. 2013; 346:f432. DOI: 10.1136/bmj.f432. PMID: 23386404.
Article
16. Zhang YZ, Li YY. Inflammatory bowel disease: pathogenesis. World J Gastroenterol. 2014; 20:91–99. PMID: 24415861.
Article
17. Peyrin-Biroulet L, Lémann M. Review article: remission rates achievable by current therapies for inflammatory bowel disease. Aliment Pharmacol Ther. 2011; 33:870–879. PMID: 21323689.
Article
18. Paramsothy S, Paramsothy R, Rubin DT, et al. Faecal microbiota transplantation for inflammatory bowel disease: a systematic review and meta-analysis. J Crohns Colitis. 2017; 11:1180–1199. PMID: 28486648.
Article
19. Search UC + FMT. U.S. National Library of Medicine ClinicalTrials.gov. Accessed April 10, 2017. https://clinicaltrials.gov.
20. Moayyedi P, Surette MG, Kim PT, et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology. 2015; 149:102–109.e6. PMID: 25857665.
Article
21. Rossen NG, Fuentes S, van der, et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology. 2015; 149:110–118.e4. PMID: 25836986.
Article
22. Paramsothy S, Kamm MA, Kaakoush NO, et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet. 2017; 389:1218–1228. PMID: 28214091.
Article
23. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007; 104:13780–13785. PMID: 17699621.
Article
24. Ott SJ, Musfeldt M, Wenderoth DF, et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut. 2004; 53:685–693. PMID: 15082587.
Article
25. Sha S, Xu B, Wang X, et al. The biodiversity and composition of the dominant fecal microbiota in patients with inflammatory bowel disease. Diagn Microbiol Infect Dis. 2013; 75:245–251. PMID: 23276768.
Article
26. Peterson DA, Frank DN, Pace NR, Gordon JI. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe. 2008; 3:417–427. PMID: 18541218.
Article
27. Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006; 55:205–211. PMID: 16188921.
Article
28. Gophna U, Sommerfeld K, Gophna S, Doolittle WF, Veldhuyzen van. Differences between tissue-associated intestinal microfloras of patients with Crohn's disease and ulcerative colitis. J Clin Microbiol. 2006; 44:4136–4141. PMID: 16988016.
Article
29. Molodecky NA, Kaplan GG. Environmental risk factors for inflammatory bowel disease. Gastroenterol Hepatol (N Y). 2010; 6:339–346. PMID: 20567592.
30. García Rodríguez LA, Ruigómez A, Panés J. Acute gastroenteritis is followed by an increased risk of inflammatory bowel disease. Gastroenterology. 2006; 130:1588–1594. PMID: 16697722.
Article
31. Sasaki M, Klapproth JM. The role of bacteria in the pathogenesis of ulcerative colitis. J Signal Transduct. 2012; 2012:704953. DOI: 10.1155/2012/704953. PMID: 22619714.
Article
32. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009; 9:313–323. PMID: 19343057.
Article
33. Bercik P, Denou E, Collins J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011; 141:599–609. PMID: 21683077.
Article
34. Li SS, Zhu A, Benes V, et al. Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science. 2016; 352:586–589. PMID: 27126044.
Article
35. Subramanian S, Huq S, Yatsunenko T, et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature. 2014; 510:417–421. PMID: 24896187.
Article
36. Gough E, Shaikh H, Manges AR. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis. 2011; 53:994–1002. PMID: 22002980.
Article
37. Lee CH, Steiner T, Petrof EO, et al. Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent Clostridium difficile infection: a randomized clinical trial. JAMA. 2016; 315:142–149. PMID: 26757463.
Article
38. Ott SJ, Waetzig GH, Rehman A, et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology. 2017; 152:799–811.e7. PMID: 27866880.
Article
39. Jalanka J, Salonen A, Salojärvi J, et al. Effects of bowel cleansing on the intestinal microbiota. Gut. 2015; 64:1562–1568. PMID: 25527456.
Article
40. Cui B, Feng Q, Wang H, et al. Fecal microbiota transplantation through mid-gut for refractory Crohn's disease: safety, feasibility, and efficacy trial results. J Gastroenterol Hepatol. 2015; 30:51–58. PMID: 25168749.
Article
41. Walsh AJ, Bryant RV, Travis SP. Current best practice for disease activity assessment in IBD. Nat Rev Gastroenterol Hepatol. 2016; 13:567–579. PMID: 27580684.
Article
42. Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. 2012; 9:577–589. PMID: 22945443.
Article
Full Text Links
  • IR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr