Cancer Res Treat.  2018 Jan;50(1):118-128. 10.4143/crt.2016.575.

Patterns of Care for Radiotherapy in the Neoadjuvant and Adjuvant Treatment of Gastric Cancer: A Twelve-Year Nationwide Cohort Study in Korea

Affiliations
  • 1Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea. mdgold@yuhs.ac
  • 2Department of Public Health, Graduate School, Yonsei University, Seoul, Korea.
  • 3Institute of Health Services Research, Yonsei University College of Medicine, Seoul, Korea. ECPARK@yuhs.ac
  • 4Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea.
  • 5Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
  • 6Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea.

Abstract

PURPOSE
Although Korea has the highest incidence of gastric cancer worldwide and D2-lymphadenectomies are routinely performed, radiotherapy (RT) practice patterns have not been well studied. Therefore, we examined RT usage trends for neoadjuvant/adjuvant patients and identified factors associated with RT. We also examined survival benefits and net medical cost advantages of adding RT.
MATERIALS AND METHODS
Patients diagnosed with gastric cancer who underwent gastrectomy from 2002-2013 were identified using National Health Insurance Service-National Sample Cohort.
RESULTS
Annually, 30.9 cases per 100,000 population in crude rate underwent gastrectomy in 230 hospitals and 49.8% received neoadjuvant/adjuvant therapy in 182 hospitals. For neoadjuvant/adjuvant patients, postoperative chemo-RT was administered in 4% of cases in 26 hospitals. No significant trends regarding treatment type were observed over time. Having undergone RT was inversely associated with being ≥ 60 years old and having a low income. Having undergone RT was positively related to having a Charlson comorbidity index ≥ 4, hospital location and hospital volume (≥ 2,000 beds). Significant portions of patients treated with RT in this nation (52%) were concentrated in one large-volume hospital. Use of RT linked to increased cost of primary treatment, yet not to reduced overall medical expense. RT did not influence both on overall and disease-specific survivals after adjusting for potential confounders (p > 0.05).
CONCLUSION
RT was uncommonly utilized as adjuvant or neoadjuvant treatment by physicians in Korea. Despite intrinsic drawback in this data, we did not find either survival benefit or net medical cost advantage by adding RT in adjuvant treatment.

Keyword

Stomach neoplasms; Chemoradiotherapy; Adjuvant radiotherapy; Physicians' practice patterns

MeSH Terms

Chemoradiotherapy
Cohort Studies*
Comorbidity
Gastrectomy
Humans
Incidence
Korea*
National Health Programs
Neoadjuvant Therapy
Practice Patterns, Physicians'
Radiotherapy*
Radiotherapy, Adjuvant
Stomach Neoplasms*

Figure

  • Fig. 1. Bubble charts for the proportion of patients by the hospital. Two-dimensional bubble charts indicate how the proportions of adjuvant chemoradiotherapy (A), neoadjuvant chemotherapy (B), and adjuvant chemotherapy use (C) in each hospital change by hospital volume. The size of the bubble corresponds to the proportion within each treatment group. RT, radiotherapy.


Reference

References

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015; 65:87–108.
Article
2. Colquhoun A, Arnold M, Ferlay J, Goodman KJ, Forman D, Soerjomataram I. Global patterns of cardia and non-cardia gastric cancer incidence in 2012. Gut. 2015; 64:1881–8.
Article
3. Jung KW, Won YJ, Kong HJ, Oh CM, Cho H, Lee DH, et al. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2012. Cancer Res Treat. 2015; 47:127–41.
Article
4. Lim DH, Kim DY, Kang MK, Kim YI, Kang WK, Park CK, et al. Patterns of failure in gastric carcinoma after D2 gastrectomy and chemoradiotherapy: a radiation oncologist's view. Br J Cancer. 2004; 91:11–7.
Article
5. Knight G, Earle CC, Cosby R, Coburn N, Youssef Y, Malthaner R, et al. Neoadjuvant or adjuvant therapy for resectable gastric cancer: a systematic review and practice guideline for North America. Gastric Cancer. 2013; 16:28–40.
Article
6. Fujitani K. Overview of adjuvant and neoadjuvant therapy for resectable gastric cancer in the East. Dig Surg. 2013; 30:119–29.
Article
7. Macdonald JS, Smalley SR, Benedetti J, Hundahl SA, Estes NC, Stemmermann GN, et al. Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction. N Engl J Med. 2001; 345:725–30.
Article
8. Lee J, Lim DH, Kim S, Park SH, Park JO, Park YS, et al. Phase III trial comparing capecitabine plus cisplatin versus capecitabine plus cisplatin with concurrent capecitabine radiotherapy in completely resected gastric cancer with D2 lymph node dissection: the ARTIST trial. J Clin Oncol. 2012; 30:268–73.
Article
9. Verheij M, Jansen EP, Cats A, van Grieken NC, Aaronson NK, Boot H, et al. A multicenter randomized phase III trial of neoadjuvant chemotherapy followed by surgery and chemotherapy or by surgery and chemoradiotherapy in resectable gastric cancer: first results from the CRITICS study. J Clin Oncol. 2016; 34(15 Suppl):Abstr 4000.
Article
10. Kim TH, Park SR, Ryu KW, Kim YW, Bae JM, Lee JH, et al. Phase 3 trial of postoperative chemotherapy alone versus chemoradiation therapy in stage III-IV gastric cancer treated with R0 gastrectomy and D2 lymph node dissection. Int J Radiat Oncol Biol Phys. 2012; 84:e585–92.
Article
11. Sakuramoto S, Sasako M, Yamaguchi T, Kinoshita T, Fujii M, Nashimoto A, et al. Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. N Engl J Med. 2007; 357:1810–20.
Article
12. Bang YJ, Kim YW, Yang HK, Chung HC, Park YK, Lee KH, et al. Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): a phase 3 open-label, randomised controlled trial. Lancet. 2012; 379:315–21.
Article
13. Schmidt B, Yoon SS. D1 versus D2 lymphadenectomy for gastric cancer. J Surg Oncol. 2013; 107:259–64.
Article
14. Schwarz RE, Smith DD. Clinical impact of lymphadenectomy extent in resectable gastric cancer of advanced stage. Ann Surg Oncol. 2007; 14:317–28.
Article
15. Lee J, Lee JS, Park SH, Shin SA, Kim K. Cohort Profile: The National Health Insurance Service-National Sample Cohort (NHIS-NSC), South Korea. Int J Epidemiol. 2017; 46:e15.
Article
16. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987; 40:373–83.
Article
17. Choi KS, Kwak MS, Lee HY, Jun JK, Hahm MI, Park EC. Screening for gastric cancer in Korea: population-based preferences for endoscopy versus upper gastrointestinal series. Cancer Epidemiol Biomarkers Prev. 2009; 18:1390–8.
Article
18. Smalley SR, Benedetti JK, Haller DG, Hundahl SA, Estes NC, Ajani JA, et al. Updated analysis of SWOG-directed intergroup study 0116: a phase III trial of adjuvant radiochemotherapy versus observation after curative gastric cancer resection. J Clin Oncol. 2012; 30:2327–33.
Article
19. Seyedin S, Wang PC, Zhang Q, Lee P. Benefit of adjuvant chemoradiotherapy for gastric adenocarcinoma: a SEER population analysis. Gastrointest Cancer Res. 2014; 7:82–90.
20. Cheng J, Squires MH 3rd, Mikell JL, Fisher SB, Staley CA 3rd, Kooby DA, et al. Radiotherapy patterns of care in gastric adenocarcinoma: a single institution experience. J Gastrointest Oncol. 2015; 6:247–53.
21. Ashraf N, Hoffe S, Kim R. Adjuvant treatment for gastric cancer: chemotherapy versus radiation. Oncologist. 2013; 18:1013–21.
Article
22. The Information Committee of the Korean Gastric Cancer Association. 2004 Nationwide gastric cancer report in Korea. J Korean Gastric Cancer Assoc. 2007; 7:47–54.
Article
23. Cuschieri A, Weeden S, Fielding J, Bancewicz J, Craven J, Joypaul V, et al. Patient survival after D1 and D2 resections for gastric cancer: long-term results of the MRC randomized surgical trial. Surgical Co-operative Group. Br J Cancer. 1999; 79:1522–30.
24. Hartgrink HH, van de Velde CJ, Putter H, Bonenkamp JJ, Klein Kranenbarg E, Songun I, et al. Extended lymph node dissection for gastric cancer: who may benefit? Final results of the randomized Dutch gastric cancer group trial. J Clin Oncol. 2004; 22:2069–77.
Article
25. Bonenkamp JJ, Hermans J, Sasako M, van de Velde CJ, Welvaart K, Songun I, et al. Extended lymph-node dissection for gastric cancer. N Engl J Med. 1999; 340:908–14.
Article
26. Sano T, Sasako M, Yamamoto S, Nashimoto A, Kurita A, Hiratsuka M, et al. Gastric cancer surgery: morbidity and mortality results from a prospective randomized controlled trial comparing D2 and extended para-aortic lymphadenectomy: Japan Clinical Oncology Group study 9501. J Clin Oncol. 2004; 22:2767–73.
27. Kim S, Lim DH, Lee J, Kang WK, MacDonald JS, Park CH, et al. An observational study suggesting clinical benefit for adjuvant postoperative chemoradiation in a population of over 500 cases after gastric resection with D2 nodal dissection for adenocarcinoma of the stomach. Int J Radiat Oncol Biol Phys. 2005; 63:1279–85.
Article
28. Chang JS, Koom WS, Lee Y, Yoon HI, Lee HS. Postoperative adjuvant chemoradiotherapy in D2-dissected gastric cancer: is radiotherapy necessary after D2-dissection? World J Gastroenterol. 2014; 20:12900–7.
Article
29. Chang JS, Lim JS, Noh SH, Hyung WJ, An JY, Lee YC, et al. Patterns of regional recurrence after curative D2 resection for stage III (N3) gastric cancer: implications for postoperative radiotherapy. Radiother Oncol. 2012; 104:367–73.
Article
30. Yu JI, Lim do H, Ahn YC, Lee J, Kang WK, Park SH, et al. Effects of adjuvant radiotherapy on completely resected gastric cancer: a radiation oncologist's view of the ARTIST randomized phase III trial. Radiother Oncol. 2015; 117:171–7.
Article
Full Text Links
  • CRT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr