1. Agarwal S, Agarwal S, Jin H, Pancholi P, Pancholi V. Serine/threonine phosphatase (SP-STP), secreted from
Streptococcus pyogenes, is a pro-apoptotic protein. J Biol Chem. 2012; 287:9147–9167.
Article
2. Archambaud C, Nahori MA, Pizarro-Cerda J, Cossart P, Dussurget O. Control of Listeria superoxide dismutase by phosphorylation. J Biol Chem. 2006; 281:31812–31822.
3. Barford D, Das AK, Egloff MP. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct. 1998; 27:133–164.
Article
4. Baums CG, Valentin-Weigand P. Surface-associated and secreted factors of
Streptococcus suis in epidemiology, pathogenesis and vaccine development. Anim Health Res Rev. 2009; 10:65–83.
Article
5. Burnside K, Lembo A, de Los Reyes M, Iliuk A, BinhTran NT, Connelly JE, Lin WJ, Schmidt BZ, Richardson AR, Fang FC, Tao WA, Rajagopal L. Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase. PLoS One. 2010; 5:e11071.
6. Bus JS, Gibson JE. Paraquat: model for oxidant-initiated toxicity. Environ Health Perspect. 1984; 55:37–46.
Article
7. Cameron DR, Ward DV, Kostoulias X, Howden BP, Moellering RC Jr, Eliopoulos GM, Peleg AY. Serine/threonine phosphatase Stp1 contributes to reduced susceptibility to vancomycin and virulence in
Staphylococcus aureus. J Infect Dis. 2012; 205:1677–1687.
Article
8. Cybulski RJ Jr, Sanz P, Alem F, Stibitz S, Bull RL, O'Brien AD. Four superoxide dismutases contribute to
Bacillus anthracis virulence and provide spores with redundant protection from oxidative stress. Infect Immun. 2009; 77:274–285.
Article
9. Dong W, Ma J, Zhu Y, Zhu J, Yuan L, Wang Y, Xu J, Pan Z, Wu Z, Zhang W, Lu C, Yao H. Virulence genotyping and population analysis of
Streptococcus suis serotype 2 isolates from China. Infect Genet Evol. 2015; 36:483–489.
Article
10. Feng Y, Zhang H, Wu Z, Wang S, Cao M, Hu D, Wang C. Streptococcus suis infection: an emerging/reemerging challenge of bacterial infectious diseases? Virulence. 2014; 5:477–497.
11. Gaidenko TA, Kim TJ, Price CW. The PrpC serine-threonine phosphatase and PrkC kinase have opposing physiological roles in stationary-phase
Bacillus subtilis cells. J Bacteriol. 2002; 184:6109–6114.
Article
12. Grenier D, Bodet C.
Streptococcus suis stimulates ICAM-1 shedding from microvascular endothelial cells. FEMS Immunol Med Microbiol. 2008; 54:271–276.
Article
13. Haas B, Vaillancourt K, Bonifait L, Gottschalk M, Grenier D. Hyaluronate lyase activity of
Streptococcus suis serotype 2 and modulatory effects of hyaluronic acid on the bacterium's virulence properties. BMC Res Notes. 2015; 8:722.
Article
14. Han H, Liu C, Wang Q, Xuan C, Zheng B, Tang J, Yan J, Zhang J, Li M, Cheng H, Lu G, Gao GF. The two-component system Ihk/Irr contributes to the virulence of
Streptococcus suis serotype 2 strain 05ZYH33 through alteration of the bacterial cell metabolism. Microbiology. 2012; 158:1852–1866.
Article
15. Houde M, Gottschalk M, Gagnon F, Van Calsteren MR, Segura M.
Streptococcus suis capsular polysaccharide inhibits phagocytosis through destabilization of lipid microdomains and prevents lactosylceramide-dependent recognition. Infect Immun. 2012; 80:506–517.
Article
16. Jin H, Pancholi V. Identification and biochemical characterization of a eukaryotic-type serine/threonine kinase and its cognate phosphatase in
Streptococcus pyogenes: their biological functions and substrate identification. J Mol Biol. 2006; 357:1351–1372.
Article
17. Ju CX, Gu HW, Lu CP. Characterization and functional analysis of atl, a novel gene encoding autolysin in
Streptococcus suis. J Bacteriol. 2012; 194:1464–1473.
Article
18. Kennelly PJ. Protein kinases and protein phosphatases in prokaryotes: a genomic perspective. FEMS Microbiol Lett. 2002; 206:1–8.
Article
19. Li J, Tan C, Zhou Y, Fu S, Hu L, Hu J, Chen H, Bei W. The two-component regulatory system CiaRH contributes to the virulence of
Streptococcus suis 2. Vet Microbiol. 2011; 148:99–104.
Article
20. Li M, Wang C, Feng Y, Pan X, Cheng G, Wang J, Ge J, Zheng F, Cao M, Dong Y, Liu D, Wang J, Lin Y, Du H, Gao GF, Wang X, Hu F, Tang J. SalK/SalR, a two-component signal transduction system, is essential for full virulence of highly invasive Streptococcus suis serotype 2. PLoS One. 2008; 3:e2080.
21. Martinez MA, Das K, Saikolappan S, Materon LA, Dhandayuthapani S. A serine/threonine phosphatase encoded by
MG_207 of
Mycoplasm genitalium is critical for its virulence. BMC Microbiol. 2013; 13:44.
Article
22. Neiss WF. Electron staining of the cell surface coat by osmium-low ferrocyanide. Histochemistry. 1984; 80:231–242.
Article
23. Osaki M, Arcondéguy T, Bastide A, Touriol C, Prats H, Trombe MC. The StkP/PhpP signaling couple in
Streptococcus pneumoniae: cellular organization and physiological characterization. J Bacteriol. 2009; 191:4943–4950.
Article
24. Pereira SFF, Goss L, Dworkin J. Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol Mol Biol Rev. 2011; 75:192–212.
Article
25. Pullen KE, Ng HL, Sung PY, Good MC, Smith SM, Alber T. An alternate conformation and a third metal in PstP/Ppp, the
M. tuberculosis PP2C-family Ser/Thr protein phosphatase. Structure. 2004; 12:1947–1954.
Article
26. Rajagopal L, Clancy A, Rubens CE. A eukaryotic type serine/threonine kinase and phosphatase in
Streptococcus agalactiae reversibly phosphorylate an inorganic pyrophosphatase and affect growth, cell segregation, and virulence. J Biol Chem. 2003; 278:14429–14441.
Article
27. Rajagopal L, Vo A, Silvestroni A, Rubens CE. Regulation of purine biosynthesis by a eukaryotic-type kinase in
Streptococcus agalactiae. Mol Microbiol. 2005; 56:1329–1346.
Article
28. Rajala RVS, Kanan Y, Anderson RE. Photoreceptor neuroprotection: regulation of Akt activation through serine/threonine phosphatases, PHLPP and PHLPPL. In : Rickman CB, LaVail MM, Anderson RE, Grimm C, Hollyfield J, Ash J, editors. Retinal Degenerative Diseases: Mechanisms and Experimental Thergpy. London: Springer;2016. p. 419–424. (Advances in Experimental Medicine and Biology; Vol. 854).
29. Segura M, Gottschalk M.
Streptococcus suis interactions with the murine macrophage cell line J774: adhesion and cytotoxicity. Infect Immun. 2002; 70:4312–4322.
Article
30. Takamatsu D, Osaki M, Sekizaki T. Construction and characterization of
Streptococcus suis-
Escherichia coli shuttle cloning vectors. Plasmid. 2001; 45:101–113.
Article
31. Takamatsu D, Osaki M, Sekizaki T. Thermosensitive suicide vectors for gene replacement in
Streptococcus suis. Plasmid. 2001; 46:140–148.
Article
32. Tang Y, Zhang X, Wu W, Lu Z, Fang W. Inactivation of the sodA gene of
Streptococcus suis type 2 encoding superoxide dismutase leads to reduced virulence to mice. Vet Microbiol. 2012; 158:360–366.
Article
33. Tang Y, Zhao H, Wu W, Wu D, Li X, Fang W. Genetic and virulence characterization of
Streptococcus suis type 2 isolates from swine in the provinces of Zhejiang and Henan, China. Folia Microbiol (Praha). 2011; 56:541–548.
Article
34. Ulijasz AT, Falk SP, Weisblum B. Phosphorylation of the RitR DNA-binding domain by a Ser-Thr phosphokinase: implications for global gene regulation in the streptococci. Mol Microbiol. 2009; 71:382–390.
Article
35. van Samkar A, Brouwer MC, Schultsz C, van der Ende A, van de Beek D. Streptococcus suis Meningitis: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2015; 9:e0004191.
36. Zhao Y, Liu G, Li S, Wang M, Song J, Wang J, Tang J, Li M, Hu F. Role of a type IV-like secretion system of
Streptococcus suis 2 in the development of streptococcal toxic shock syndrome. J Infect Dis. 2011; 204:274–281.
Article
37. Zhu H, Huang D, Zhang W, Wu Z, Lu Y, Jia H, Wang M, Lu C. The novel virulence-related gene stp of
Streptococcus suis serotype 9 strain contributes to a significant reduction in mouse mortality. Microb Pathog. 2011; 51:442–453.
Article