Exp Mol Med.  2017 Jul;49(7):e355. 10.1038/emm.2017.95.

Harmless effects of argon plasma on caudal fin regeneration and embryogenesis of zebrafish: novel biological approaches for safe medical applications of bioplasma

Affiliations
  • 1Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. wangmouse@catholic.ac.kr, hrhim@catholic.ac.kr
  • 2Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
  • 3Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University , Seoul, Republic of Korea.
  • 4Plasma Bioscience Research Center, Kwangwoon University, Seoul, Republic of Korea.

Abstract

The argon plasma jet (Ar-PJ) is widely used in medical fields such as dermatology and dentistry, and it is considered a promising tool for cancer therapy. However, the in vivo effects of Ar-PJ for medical uses have not yet been investigated, and there are no biological tools to determine the appropriate clinical dosages of Ar-PJ. In this study, we used the caudal fin and embryo of zebrafish as novel in vivo tools to evaluate the biosafety of Ar-PJ. Typically, Ar-PJ is known to induce cell death in two-dimensional (2D) cell culture systems. By contrast, no detrimental effects of Ar-PJ were shown in our 3D zebrafish systems composed of 2D cells. The Ar-PJ-treated caudal fins grew by an average length of 0.7"‰mm, similar to the length of the normally regenerating fins. Remarkably, Ar-PJ did not affect the expression patterns of Wnt8a and β-Catenin, which play important roles in fin regeneration. In the embryo system, 85% of the Ar-PJ-treated embryos hatched, and the lateral length of these embryos was ~3.3"‰mm, which are equivalent to the lengths of normal embryos. In particular, vasculogenesis, which is the main cellular process during tissue regeneration and embryogenesis, occurred normally under the Ar-PJ dose used in this study. Therefore, our biosafety evaluation tools that use living model systems can be used to provide an experimental guideline to determine the clinically safe dosage of Ar-PJ.


MeSH Terms

Argon*
Cell Culture Techniques
Cell Death
Dentistry
Dermatology
Embryonic Development*
Embryonic Structures
Female
Plasma*
Pregnancy
Regeneration*
Zebrafish*
Argon
Full Text Links
  • EMM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr