Transl Clin Pharmacol.  2016 Mar;24(1):43-54. 10.12793/tcp.2016.24.1.43.

Screening study for genetic polymorphisms affecting pharmacokinetics of simvastatin

Affiliations
  • 1Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Korea. ysvin@khu.ac.kr
  • 2Department of BioMedical Science, College of Life Science, CHA University, Pangyo-ro, Bundang-gu, SeongNam 13488, Korea. kbkwack@cha.ac.kr

Abstract

Simvastatin reduces plasma cholesterol by inhibiting HMG-CoA reductase (HMGR) and is widely used in the treatment of hypercholesterolemia. To screening the possible genetic factors affecting the pharmacokinetics (PK) of simvastatin, 35 male Korean volunteers were enrolled from two separate bioequivalence studies. Each subject was administered 20 mg simvastatin and reference drug PK parameters were used. We used Illumina Human610Quad v1.0 DNA Analysis BeadChip for whole genome SNPs analysis and whole genome genotyping data was processed by linear regression analysis for PK parameters of drug metabolizing enzymes and transporters. We found 145 significant SNPs (P < 0.01) in C(max), 135 significant SNPs (P < 0.01) in T(max) and 85 significant SNPs (P < 0.01) in AUC(inf) from whole genome analysis. In particular, we found that the ABCC2 gene had a significant effect on C(max) and AUC(inf). These results could provide information of possible candidate genes for personalized simvastatin therapy.

Keyword

Pharmacogenomics; Simvastatin; Pharmacokinetics; Single nucleotide polymorphism

MeSH Terms

Cholesterol
DNA
Genome
Humans
Hypercholesterolemia
Linear Models
Male
Mass Screening*
Oxidoreductases
Pharmacogenetics
Pharmacokinetics*
Plasma
Polymorphism, Genetic*
Polymorphism, Single Nucleotide
Simvastatin*
Therapeutic Equivalency
Volunteers
Cholesterol
DNA
Oxidoreductases
Simvastatin

Cited by  1 articles

Screening study for genetic polymorphisms affecting pharmacokinetics of talniflumate
Li Hua Jin, Bo-Hyung Kim, Ji Hyun Lee, Kidong Lee, KyuBum Kwack, Sung-Vin Yim
Transl Clin Pharmacol. 2017;25(4):166-172.    doi: 10.12793/tcp.2017.25.4.166.


Reference

References

1. Gardiner SJ, Begg EJ. Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol Rev. 2006; 58:521–590.
Article
2. Hiratsuka M, Sasaki T, Mizugaki M. Genetic testing for pharmacogenetics and its clinical application in drug therapy. Clin Chim Acta. 2006; 363:177–186.
Article
3. Voisey J, Morris CP. SNP technologies for drug discovery: a current review. Curr Drug Discov Technol. 2008; 5:230–235.
Article
4. Riva A, Kohane IS. A web-based tool to retrieve human genome polymorphisms from public databases. Proc AMIA Symp. 2001. 558–62.
5. Zhou Q, Sparreboom A, Tan EH, Cheung YB, Lee A, Poon D, et al. Pharmacogenetic profiling across the irinotecan pathway in Asian patients with cancer. Br J Clin Pharmacol. 2005; 59:415–424.
Article
6. Rollason V, Samer C, Piguet V, Dayer P, Desmeules J. Pharmacogenetics of analgesics: toward the individualization of prescription. Pharmacogenomics. 2008; 9:905–933.
Article
7. Yokota H, Satoh Y, Ono Y, Kaneko M, Ikeda H, Tsuji S, et al. Establishment of a pharmacogenomics testing system for the realization of individual pharmacotherapy. Rinsho Byori. 2008; 56:772–780.
8. Moghadasian MH. Clinical pharmacology of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Life Sci. 1999; 65:1329–1337.
Article
9. Davignon J, Montigny M, Dufour R. HMG-CoA reductase inhibitors: a look back and a look ahead. Can J Cardiol. 1992; 8:843–864.
10. Mabuchi H, Haba T, Tatami R, Miyamoto S, Sakai Y, Wakasugi T, et al. Effect of an inhibitor of 3-hydroxy-3-methyglutaryl coenzyme A reductase on serum lipoproteins and ubiquinone-10-levels in patients with familial hypercholesterolemia. N Engl J Med. 1981; 305:478–482.
11. Mabuchi H, Sakai T, Sakai Y, Yoshimura A, Watanabe A, Wakasugi T, et al. Reduction of serum cholesterol in heterozygous patients with familial hypercholesterolemia. Additive effects of compactin and cholestyramine. N Engl J Med. 1983; 308:609–613.
12. Bilheimer DW, Grundy SM, Brown MS, Goldstein JL. Mevinolin and colestipol stimulate receptormediated clearance of low density lipoprotein from plasma in familial hypercholesterolemia heterozygotes. Proc Natl Acad Sci USA. 1983; 80:4124–4128.
Article
13. McKenney JM, Swearingen D, Di Spirito M, Doyle R, Pantaleon C, Kling D, et al. Study of the pharmacokinetic interaction between simvastatin and prescription omega-3-acid ethyl esters. J Clin Pharmacol. 2006; 46:785–791.
Article
14. Keskitalo JE, Pasanen MK, Neuvonen PJ, Niemi M. Different effects of the ABCG2 c.421C>A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics. 2009; 10:1617–1624.
15. Kjekshus J, Pedersen TR, Olsson AG, Faergeman O, Pyörälä K. The effects of simvastatin on the incidence of heart failure in patients with coronary heart disease. J Card Fail. 1997; 3:249–254.
Article
16. Hellinger FJ, Encinosa WE. The cost and incidence of prescribing errors among privately insured HIV patients. Pharmacoeconomics. 2010; 28:23–34.
Article
17. Undas A, Kaczmarek P, Sladek K, Stepien E, Skucha W, Rzeszutko M, et al. Fibrin clot properties are altered in patients with chronic obstructive pulmonary disease. Beneficial effects of simvastatin treatment. Thromb Haemost. 2009; 102:1176–1182.
18. Voora D, Shah SH, Spasojevic I, Ali S, Reed CR, Salisbury BA, et al. The SLCO1B1∗5 genetic variant is associated with statininduced side effects. J Am Coll Cardiol. 2009; 54:1609–1616.
19. Keskitalo JE, Kurkinen KJ, Neuvoneni PJ, Niemi M. ABCB1 haplotypes differentially affect the pharmacokinetics of the acid and lactone forms of simvastatin and atorvastatin. Clin Pharmacol Ther. 2008; 84:457–461.
Article
20. Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F, et al. SL-CO1B1 variants and statininduced myopathy–a genomewide study. N Engl J Med. 2008; 359:789–799.
21. Kim KA, Park PW, Lee OJ, Kang DK, Park JY. Effect of polymorphic CY-P3A5 genotype on the single-dose simvastatin pharmacokinetics in healthy subjects. J Clin Pharmacol. 2007; 47:87–93.
22. Provenzani A, Notarbartolo M, Labbozzetta M, Poma P, Biondi F, Sanguedolce R, et al. The effect of CYP3A5 and ABCB1 single nucleotide polymorphisms on tacrolimus dose requirements in Caucasian liver transplant patients. Ann Transplant. 2009; 14:23–31.
23. Scheel J, Hussong R, Schrenk D, Schmitz HJ. Variability of the human aryl hydrocarbon receptor nuclear translocator (ARNT) gene. J Hum Genet. 2002; 47:217–224.
Article
24. Branicki W, Brudnik U, Draus-Barini J, Kupiec T, Wojas-Pelc A. Association of the SLC45A2 gene with physiological human hair colour variation. J Hum Genet. 2008; 53:966–971.
Article
26. Xu Q, Jia YB, Zhang BY, Zou K, Tao YB, Wang YP, et al. Association study of an SNP combination pattern in the dopaminergic pathway in paranoid schizophrenia: a novel strategy for complex disorders. Mol Psychiatry. 2004; 9:510–521.
Article
27. Sun X, Jia Y, Zhang X, Xu Q, Shen Y, Li Y. Multilocus association study of schizophrenia susceptibility genes with a posterior probability method. Sci China C Life Sci. 2005; 48:263–269.
Article
28. Wang Y, Hu Y, Fang Y, Zhang K, Yang H, Ma J, et al. Evidence of epistasis between the catechol-Omethyltransferase and aldehyde dehydrogenase 3B1 genes in paranoid schizophrenia. Biol Psychiatry. 2009; 65:1048–1054.
Article
29. Abla N, Chinn LW, Nakamura T, Liu L, Huang CC, Johns SJ, et al. The human multidrug resistance protein 4 (MRP4, ABCC4): functional analysis of a highly polymorphic gene. J Pharmacol Exp Ther. 2008; 325:859–868.
30. Saito S, Iida A, Sekine A, Miura Y, Ogawa C, Kawauchi S, et al. Identification of 779 genetic variations in eight genes encoding members of the ATP-binding cassette, subfamily C (ABCC/MRP/CFTR. J Hum Genet. 2002; 47:147–171.
Article
31. Anderson PL, Lamba J, Aquilante CL, Schuetz E, Fletcher CV. Pharmacogenetic characteristics of indinavir, zidovudine, and lamivudine therapy in HIV-infected adults: a pilot study. J Acquir Immune Defic Syndr. 2006; 42:441–449.
32. Izzedine H, Hulot JS, Villard E, Goyenvalle C, Dominguez S, Ghosn J, et al. Association between ABCC2 gene haplotypes and tenofovir-induced proximal tubulopathy. J Infect Dis. 2006; 194:1481–1491.
33. Gradhand U, Lang T, Schaeffeler E, Glaeser H, Tegude H, Klein K, et al. Variability in human hepatic MRP4 expression: influence of cholestasis and genotype. Pharmacogenomics J. 2008; 8:42–52.
Article
34. Suzuki H, Sugiyama Y. Single nucleotide polymorphisms in multidrug resistance associated protein 2 (MRP2/ABCC2): its impact on drug disposition. Adv Drug Deliv Rev. 2002; 54:1311–1331.
Article
35. Ho WF, Koo SH, Yee JY, Lee JD. Genetic variations of the ABCC2 gene in the Chinese, Malay, and Indian populations of Singapore. Drug Metab Pharmacokinet. 2008; 23:385–391.
Article
36. Sasaki M, Suzuki H, Ito K, Abe T, Sugiyama Y. Transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II cell monolayer expressing both human organic anion-transporting polypeptide (OATP2/SLC21A6) and Multidrug resistance-associated protein 2 (MRP2/ABCC2). J Biol Chem. 2002; 277:6497–6503.
Article
37. Chen C, Mireles RJ, Campbell SD, Lin J, Mills JB, Xu JJ, et al. Differential interaction of 3-hydroxy-3-methylglutaryl-coa reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab Dispos. 2005; 33:537–546.
Article
Full Text Links
  • TCP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr