Int J Stem Cells.  2015 May;8(1):36-47. 10.15283/ijsc.2015.8.1.36.

Cell Sources, Liver Support Systems and Liver Tissue Engineering: Alternatives to Liver Transplantation

Affiliations
  • 1Department of Surgery, Hanyang University College of Medicine, Seoul, Korea. crane87@hanyang.ac.kr

Abstract

The liver is the largest organ in the body; it has a complex architecture, wide range of functions and unique regenerative capacity. The growing incidence of liver diseases worldwide requires increased numbers of liver transplant and leads to an ongoing shortage of donor livers. To meet the huge demand, various alternative approaches are being investigated including, hepatic cell transplantation, artificial devices and bioprinting of the organ itself. Adult hepatocytes are the preferred cell sources, but they have limited availability, are difficult to isolate, propagate poor and undergo rapid functional deterioration in vitro. There have been efforts to overcome these drawbacks; by improving culture condition for hepatocytes, providing adequate extracellular matrix, co-culturing with extra-parenchymal cells and identifying other cell sources. Differentiation of human stem cells to hepatocytes has become a major interest in the field of stem cell research and has progressed greatly. At the same time, use of decellularized organ matrices and 3 D printing are emerging cutting-edge technologies for tissue engineering, opening up new paths for liver regenerative medicine. This review provides a compact summary of the issues, and the locations of liver support systems and tissue engineering, with an emphasis on reproducible and useful sources of hepatocytes including various candidates formed by differentiation from stem cells.

Keyword

Hepatocyte; Stem cells; Liver; Bioartificial liver; Liver tissue engineering; Bioprinting

MeSH Terms

Adult
Bioprinting
Extracellular Matrix
Hepatocytes
Humans
Incidence
Liver Diseases
Liver Transplantation*
Liver*
Liver, Artificial
Regenerative Medicine
Stem Cell Research
Stem Cells
Tissue Donors
Tissue Engineering*

Figure

  • Fig. 1 Undifferentiated human ES cell derived hepatocyte colony was made by coculture on mitomycin treated NIH 3T3 J2 cells. AFP (A) and albumin (B) were stained with the hepatocytes in the colony. Nuclear staining (C) and merged image (D) showed various differentiation status of human ES derived hepatocytes (magnification; ×200) (54).

  • Fig. 2 Typical morphology of the cultured mouse hepatocytes with collagen double gel culture system. Arrows indicate bile canaliculi structure within mouse hepatocytes and cultured hepatocytes showed polygonal shape. Binuclear hepatocytes were present with very clear cytoplasmic margin (magnification; ×200) (63).

  • Fig. 3 3D printed hepatic structure was made by 3D bioprinting machine. RFP expressing HepG2 cells were alive in the 3 D printed hepatic structure for over 7 days (magnification; ×200).


Reference

References

1. Monga SPS. Molecular pathology of liver disease. Cagle PT, editor. Molecular pathology library. New York: Springer;2011. p. 7–25.
2. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJL. Measuring the global burden of disease and risk factors, 1990–2001. Lopez AD, editor. Disease Control Priorities Project. Global burden of disease and risk factors. Washington DC: World Bank Publications;2006. p. 1–14.
3. Matz P, Adjaye J. Characterisation of human induced pluripotent stem cell-derived hepatocyte like cells and endodermal progenitors. European Journal of Medical Research. 2014; 19( Suppl 1):S8. DOI: 10.1186/2047-783X-19-S1-S8.
4. Dhawan A, Puppi J, Hughes RD, Mitry RR. Human hepatocyte transplantation: current experience and future challenges. Nat Rev Gastroenterol Hepatol. 2010; 7:288–298. DOI: 10.1038/nrgastro.2010.44. PMID: 20368738.
Article
5. LeCluyse EL. Human hepatocyte culture systems for the in vitro evaluation of cytochrome P450 expression and regulation. Eur J Pharm Sci. 2001; 13:343–368. DOI: 10.1016/S0928-0987(01)00135-X. PMID: 11408150.
Article
6. Yovchev MI, Xue Y, Shafritz DA, Locker J, Oertel M. Repopulation of the fibrotic/cirrhotic rat liver by transplanted hepatic stem/progenitor cells and mature hepatocytes. Hepatology. 2014; 59:284–295. DOI: 10.1002/hep.26615. PMCID: 4091900.
Article
7. Komori J, Boone L, DeWard A, Hoppo T, Lagasse E. The mouse lymph node as an ectopic transplantation site for multiple tissues. Nat Biotechnol. 2012; 30:976–983. DOI: 10.1038/nbt.2379. PMID: 23000933. PMCID: 3469750.
Article
8. Soltys KA, Soto-Gutiérrez A, Nagaya M, Baskin KM, Deutsch M, Ito R, Shneider BL, Squires R, Vockley J, Guha C, Roy-Chowdhury J, Strom SC, Platt JL, Fox IJ. Barriers to the successful treatment of liver disease by hepatocyte transplantation. J Hepatol. 2010; 53:769–774. DOI: 10.1016/j.jhep.2010.05.010. PMID: 20667616. PMCID: 2930077.
Article
9. Hughes RD, Mitry RR, Dhawan A. Current status of hepatocyte transplantation. Transplantation. 2012; 93:342–347. DOI: 10.1097/TP.0b013e31823b72d6.
Article
10. Sahi J, Grepper S, Smith C. Hepatocytes as a tool in drug metabolism, transport and safety evaluations in drug discovery. Curr Drug Discov Technol. 2010; 7:188–198. PMID: 20843293.
Article
11. Allen KJ, Mifsud NA, Williamson R, Bertolino P, Hardikar W. Cell-mediated rejection results in allograft loss after liver cell transplantation. Liver Transpl. 2008; 14:688–694. PMID: 18433045.
Article
12. Schwartz RE, Verfaillie C. Hepatic stem cells. Methods Mol Biol. 2010; 640:167–179. PMID: 20645052.
Article
13. Nagata H, Nishitai R, Shirota C, Zhang JL, Koch CA, Cai J, Awwad M, Schuurman HJ, Christians U, Abe M, Baranowska-Kortylewicz J, Platt JL, Fox IJ. Prolonged survival of porcine hepatocytes in cynomolgus monkeys. Gastroenterology. 2007; 132:321–329. DOI: 10.1053/j.gastro.2006.10.013. PMID: 17241882.
Article
14. Gupta S. Hog heaven on the road to liver cell therapy. Gastroenterology. 2007; 132:450–453. DOI: 10.1053/j.gastro.2006.11.047. PMID: 17241895.
Article
15. Yang Q, Liu F, Pan XP, Lv G, Zhang A, Yu CB, Li L. Fluidized-bed bioartificial liver assist devices (BLADs) based on microencapsulated primary porcine hepatocytes have risk of porcine endogenous retroviruses transmission. Hepatol Int. 2010; 4:757–761.
Article
16. te Velde AA, Flendrig LM, Ladiges NC, Chamuleau RA. Immunological consequences of the use of xenogeneic hepatocytes in a bioartificial liver for acute liver failure. Int J Artif Organs. 1997; 20:229–233. PMID: 9195241.
Article
17. Krebs N, Neville C, Vacanti JP. Cellular transplants for liver diseases. Halberstadt C, Emerich DF, editors. cellular transplantation: from laboratory to clinic. Burlington, MA: AcademicPress;2011. p. 215–240.
Article
18. Sussman NL, Chong MG, Koussayer T, He DE, Shang TA, Whisennand HH, Kelly JH. Reversal of fulminant hepatic failure using an extracorporeal liver assist device. Hepatology. 1992; 16:60–65. DOI: 10.1002/hep.1840160112. PMID: 1618484.
Article
19. Tsiaoussis J, Newsome PN, Nelson LJ, Hayes PC, Plevris JN. Which hepatocyte will it be? Hepatocyte choice for bio-artificial liver support systems. Liver Transpl. 2001; 7:2–10. PMID: 11150414.
Article
20. Ellis AJ, Hughes RD, Wendon JA, Dunne J, Langley PG, Kelly JH, Gislason GT, Sussman NL, Williams R. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology. 1996; 24:1446–1451. DOI: 10.1002/hep.510240625. PMID: 8938179.
Article
21. Mazariegos GV, Patzer JF 2nd, Lopez RC, Giraldo M, Devera ME, Grogan TA, Zhu Y, Fulmer ML, Amiot BP, Kramer DJ. First clinical use of a novel bioartificial liver support system (BLSS). Am J Transplant. 2002; 2:260–266. DOI: 10.1034/j.1600-6143.2002.20311.x. PMID: 12096789.
Article
22. Li J, Li LJ, Cao HC, Sheng GP, Yu HY, Xu W, Sheng JF. Establishment of highly differentiated immortalized human hepatocyte line with simian virus 40 large tumor antigen for liver based cell therapy. ASAIO J. 2005; 51:262–268. DOI: 10.1097/01.MAT.0000161045.16805.8B. PMID: 15968957.
Article
23. Kobayashi N, Okitsu T, Tanaka N. Cell choice for bio-artificial livers. Keio J Med. 2003; 52:151–157. DOI: 10.2302/kjm.52.151. PMID: 14529147.
Article
24. Yoon JH, Lee HV, Lee JS, Park JB, Kim CY. Development of a non-transformed human liver cell line with differentiated-hepatocyte and urea-synthetic functions: applicable for bioartificial liver. Int J Artif Organs. 1999; 22:769–777. PMID: 10612305.
Article
25. Deurholt T, van Til NP, Chhatta AA, ten Bloemendaal L, Schwartlander R, Payne C, Plevris JN, Sauer IM, Chamuleau RA, Elferink RP, Seppen J, Hoekstra R. Novel immortalized human fetal liver cell line, cBAL111, has the potential to differentiate into functional hepatocytes. BMC Biotechnol. 2009; 9:89. DOI: 10.1186/1472-6750-9-89. PMID: 19845959. PMCID: 2770505.
Article
26. Poyck PP, van Wijk AC, van der Hoeven TV, de Waart DR, Chamuleau RA, van Gulik TM, Oude Elferink RP, Hoekstra R. Evaluation of a new immortalized human fetal liver cell line (cBAL111) for application in bioartificial liver. J Hepatol. 2008; 48:266–275. DOI: 10.1016/j.jhep.2007.09.018.
Article
27. Poyck PP, Hoekstra R, van Wijk AC, Attanasio C, Calise F, Chamuleau RA, van Gulik TM. Functional and morphological comparison of three primary liver cell types cultured in the AMC bioartificial liver. Liver Transpl. 2007; 13:589–598. DOI: 10.1002/lt.21090. PMID: 17394165.
Article
28. Chen Y, Li J, Liu X, Zhao W, Wang Y, Wang X. Transplantation of immortalized human fetal hepatocytes prevents acute liver failure in 90% hepatectomized mice. Transplant Proc. 2010; 42:1907–1914. DOI: 10.1016/j.transproceed.2010.01.061. PMID: 20620547.
Article
29. Diekmann S, Bader A, Schmitmeier S. Present and Future Developments in Hepatic Tissue Engineering for Liver Support Systems : State of the art and future developments of hepatic cell culture techniques for the use in liver support systems. Cytotechnology. 2006; 50:163–179. DOI: 10.1007/s10616-006-6336-4.
Article
30. Fausto N, Campbell JS. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech Dev. 2003; 120:117–130. DOI: 10.1016/S0925-4773(02)00338-6.
Article
31. Santoni-Rugiu E, Jelnes P, Thorgeirsson SS, Bisgaard HC. Progenitor cells in liver regeneration: molecular responses controlling their activation and expansion. APMIS. 2005; 113:876–902. DOI: 10.1111/j.1600-0463.2005.apm_386.x.
Article
32. Evarts RP, Nagy P, Nakatsukasa H, Marsden E, Thorgeirsson SS. In vivo differentiation of rat liver oval cells into hepatocytes. Cancer Res. 1989; 49:1541–1547. PMID: 2466557.
33. Coleman WB, McCullough KD, Esch GL, Faris RA, Hixson DC, Smith GJ, Grisham JW. Evaluation of the differentiation potential of WB-F344 rat liver epithelial stem-like cells in vivo. Differentiation to hepatocytes after transplantation into dipeptidylpeptidase-IV-deficient rat liver. Am J Pathol. 1997; 151:353–359. PMID: 9250149. PMCID: 1858002.
34. Wang X, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Grompe M. The origin and liver repopulating capacity of murine oval cells. Proc Natl Acad Sci U S A. 2003; 100( Suppl 1):11881–11888. PMID: 12902545. PMCID: 304102.
Article
35. Sell S. Heterogeneity and plasticity of hepatocyte lineage cells. Hepatology. 2001; 33:738–750. DOI: 10.1053/jhep.2001.21900. PMID: 11230756.
Article
36. Grompe M. Liver stem cells, where art thou? Cell Stem Cell. 2014; 15:257–258. DOI: 10.1016/j.stem.2014.08.004. PMID: 25192457.
Article
37. Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med. 2000; 6:1229–1234. PMID: 11062533.
Article
38. Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Olson S, Grompe M. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature. 2003; 422:897–901. DOI: 10.1038/nature01531. PMID: 12665832.
Article
39. Lee KD, Kuo TK, Whang-Peng J, Chung YF, Lin CT, Chou SH, Chen JR, Chen YP, Lee OK. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology. 2004; 40:1275–1284. DOI: 10.1002/hep.20469. PMID: 15562440.
Article
40. Petrie Aronin CE, Tuan RS. Therapeutic potential of the immunomodulatory activities of adult mesenchymal stem cells. Birth Defects Res C Embryo Today. 2010; 90:67–74. PMID: 20301222.
Article
41. Chang YJ, Liu JW, Lin PC, Sun LY, Peng CW, Luo GH, Chen TM, Lee RP, Lin SZ, Harn HJ, Chiou TW. Mesenchymal stem cells facilitate recovery from chemically induced liver damage and decrease liver fibrosis. Life Sci. 2009; 85:517–525. PMID: 19686763.
Article
42. Aurich I, Mueller LP, Aurich H, Luetzkendorf J, Tisljar K, Dollinger MM, Schormann W, Walldorf J, Hengstler JG, Fleig WE, Christ B. Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut. 2007; 56:405–415. DOI: 10.1136/gut.2005.090050.
Article
43. di Bonzo LV, Ferrero I, Cravanzola C, Mareschi K, Rustichell D, Novo E, Sanavio F, Cannito S, Zamara E, Bertero M, Davit A, Francica S, Novelli F, Colombatto S, Fagioli F, Parola M. Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: engraftment and hepatocyte differentiation versus profibrogenic potential. Gut. 2008; 57:223–231. DOI: 10.1136/gut.2006.111617.
Article
44. Aurich H, Sgodda M, Kaltwasser P, Vetter M, Weise A, Liehr T, Brulport M, Hengstler JG, Dollinger MM, Fleig WE, Christ B. Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut. 2009; 58:570–581. DOI: 10.1136/gut.2008.154880.
Article
45. Piryaei A, Valojerdi MR, Shahsavani M, Baharvand H. Differentiation of bone marrow-derived mesenchymal stem cells into hepatocyte-like cells on nanofibers and their transplantation into a carbon tetrachloride-induced liver fibrosis model. Stem Cell Rev. 2011; 7:103–118.
Article
46. Jalan R, Williams R. Acute-on-chronic liver failure: patho-physiological basis of therapeutic options. Blood Purif. 2002; 20:252–261.
Article
47. Chamuleau RA, Deurholt T, Hoekstra R. Which are the right cells to be used in a bioartificial liver? Metab Brain Dis. 2005; 20:327–335. PMID: 16382343.
Article
48. Payne CM, Samuel K, Pryde A, King J, Brownstein D, Schrader J, Medine CN, Forbes SJ, Iredale JP, Newsome PN, Hay DC. Persistence of functional hepatocyte-like cells in immune-compromised mice. Liver Int. 2011; 31:254–262.
Article
49. Müller LU, Daley GQ, Williams DA. Upping the ante: recent advances in direct reprogramming. Mol Ther. 2009; 17:947–953. PMID: 19337233. PMCID: 2835184.
Article
50. Shan J, Schwartz RE, Ross NT, Logan DJ, Thomas D, Duncan SA, North TE, Goessling W, Carpenter AE, Bhatia SN. Identification of small molecules for human hepatocyte expansion and iPS differentiation. Nat Chem Biol. 2013; 9:514–520. PMID: 23728495. PMCID: 3720805.
Article
51. Liu H, Kim Y, Sharkis S, Marchionni L, Jang YY. In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins. Sci Transl Med. 2011; 3:82ra39. DOI: 10.1126/scitranslmed.3002376. PMID: 21562231. PMCID: 3305909.
Article
52. Yu YD, Kim KH, Lee SG, Choi SY, Kim YC, Byun KS, Cha IH, Park KY, Cho CH, Choi DH. Hepatic differentiation from human embryonic stem cells using stromal cells. J Surg Res. 2011; 170:e253–e261. DOI: 10.1016/j.jss.2011.06.032. PMID: 21816427.
Article
53. Sekiya S, Suzuki A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature. 2011; 475:390–393. DOI: 10.1038/nature10263. PMID: 21716291.
Article
54. Huang P, He Z, Ji S, Sun H, Xiang D, Liu C, Hu Y, Wang X, Hui L. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature. 2011; 475:386–389. DOI: 10.1038/nature10116. PMID: 21562492.
Article
55. Huang P, Zhang L, Gao Y, He Z, Yao D, Wu Z, Cen J, Chen X, Liu C, Hu Y, Lai D, Hu Z, Chen L, Zhang Y, Cheng X, Ma X, Pan G, Wang X, Hui L. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell. 2014; 14:370–384. DOI: 10.1016/j.stem.2014.01.003. PMID: 24582927.
Article
56. Du Y, Wang J, Jia J, Song N, Xiang C, Xu J, Hou Z, Su X, Liu B, Jiang T, Zhao D, Sun Y, Shu J, Guo Q, Yin M, Sun D, Lu S, Shi Y, Deng H. Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming. Cell Stem Cell. 2014; 14:394–403. DOI: 10.1016/j.stem.2014.01.008. PMID: 24582926.
Article
57. Zhu S, Rezvani M, Harbell J, Mattis AN, Wolfe AR, Benet LZ, Willenbring H, Ding S. Mouse liver repopulation with hepatocytes generated from human fibroblasts. Nature. 2014; 508:93–97. DOI: 10.1038/nature13020. PMID: 24572354. PMCID: 4161230.
Article
58. Yu B, He ZY, You P, Han QW, Xiang D, Chen F, Wang MJ, Liu CC, Lin XW, Borjigin U, Zi XY, Li JX, Zhu HY, Li WL, Han CS, Wangensteen KJ, Shi Y, Hui LJ, Wang X, Hu YP. Reprogramming fibroblasts into bipotential hepatic stem cells by defined factors. Cell Stem Cell. 2013; 13:328–340. DOI: 10.1016/j.stem.2013.06.017. PMID: 23871605.
Article
59. Malik R, Selden C, Hodgson H. The role of non-parenchymal cells in liver growth. Semin Cell Dev Biol. 2002; 13:425–431. DOI: 10.1016/S1084952102001301. PMID: 12468243.
Article
60. Maher JJ, Bissell DM. Cell-matrix interactions in liver. Semin Cell Biol. 1993; 4:189–201. DOI: 10.1006/scel.1993.1023. PMID: 7688595.
Article
61. Choi HJ, Choi D. Successful mouse hepatocyte culture with sandwich collagen gel formation. J Korean Surg Soc. 2013; 84:202–208. DOI: 10.4174/jkss.2013.84.4.202. PMID: 23577314. PMCID: 3616273.
Article
62. Ansede JH, Smith WR, Perry CH, St Claire RL 3rd, Brouwer KR. An in vitro assay to assess transporter-based cholestatic hepatotoxicity using sandwich-cultured rat hepatocytes. Drug Metab Dispos. 2010; 38:276–280. DOI: 10.1124/dmd.109.028407.
Article
63. Begue JM, Guguen-Guillouzo C, Pasdeloup N, Guillouzo A. Prolonged maintenance of active cytochrome P-450 in adult rat hepatocytes co-cultured with another liver cell type. Hepatology. 1984; 4:839–842. DOI: 10.1002/hep.1840040507. PMID: 6434390.
Article
64. Rojkind M, Novikoff PM, Greenwel P, Rubin J, Rojas-Valencia L, de Carvalho AC, Stockert R, Spray D, Hertzberg EL, Wolkoff AW. Characterization and functional studies on rat liver fat-storing cell line and freshly isolated hepatocyte coculture system. Am J Pathol. 1995; 146:1508–1520. PMID: 7778689. PMCID: 1870907.
65. Bhatia SN, Balis UJ, Yarmush ML, Toner M. Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J. 1999; 13:1883–1900. PMID: 10544172.
Article
66. Burkhardt B, Martinez-Sanchez JJ, Bachmann A, Ladurner R, Nüssler AK. Long-term culture of primary hepatocytes: new matrices and microfluidic devices. Hepatology International. 2014; 8:14–22. DOI: 10.1007/s12072-013-9487-3.
Article
67. Saliba F, Camus C, Durand F, Mathurin P, Delafosse B, Barange K, Perrigault PF, Revel P, Serfaty L, Belnard M, Letierce A, Ichai P, Samuel D. 220 Predictive factors of transplant free survival in patients with fulminant and sub-fulminant liver failure; results from a randomized controlled multicenter trial. J Hepatol. 2009; 50( Suppl 1):S89. DOI: 10.1016/S0168-8278(09)60222-1.
68. Rifai K. Fractionated plasma separation and adsorption: current practice and future options. Liver Int. 2011; 31( Suppl 3):13–15. DOI: 10.1111/j.1478-3231.2011.02595.x. PMID: 21824277.
Article
69. Rifai K, Ernst T, Kretschmer U, Bahr MJ, Schneider A, Hafer C, Haller H, Manns MP, Fliser D. Prometheus--a new extracorporeal system for the treatment of liver failure. J Hepatol. 2003; 39:984–990. DOI: 10.1016/S0168-8278(03)00468-9. PMID: 14642616.
Article
70. Demetriou AA, Brown RS Jr, Busuttil RW, Fair J, McGuire BM, Rosenthal P, Am Esch JS 2nd, Lerut J, Nyberg SL, Salizzoni M, Fagan EA, de Hemptinne B, Broelsch CE, Muraca M, Salmeron JM, Rabkin JM, Metselaar HJ, Pratt D, De La Mata M, McChesney LP, Everson GT, Lavin PT, Stevens AC, Pitkin Z, Solomon BA. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg. 2004; 239:660–667. DOI: 10.1097/01.sla.0000124298.74199.e5. PMID: 15082970. PMCID: 1356274.
Article
71. Ellis AJ, Hughes RD, Wendon JA, Dunne J, Langley PG, Kelly JH, Gislason GT, Sussman NL, Williams R. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology. 1996; 24:1446–1451. DOI: 10.1002/hep.510240625. PMID: 8938179.
Article
72. Sauer IM, Kardassis D, Zeillinger K, Pascher A, Gruenwald A, Pless G, Irgang M, Kraemer M, Puhl G, Frank J, Müller AR, Steinmüller T, Denner J, Neuhaus P, Gerlach JC. Clinical extracorporeal hybrid liver support--phase I study with primary porcine liver cells. Xenotransplantation. 2003; 10:460–469. DOI: 10.1034/j.1399-3089.2003.00062.x. PMID: 12950989.
Article
73. van de Kerkhove MP, Di Florio E, Scuderi V, Mancini A, Belli A, Bracco A, Dauri M, Tisone G, Di Nicuolo G, Amoroso P, Spadari A, Lombardi G, Hoekstra R, Calise F, Chamuleau RA. Phase I clinical trial with the AMC-bio-artificial liver. Int J Artif Organs. 2002; 25:950–959. PMID: 12456036.
Article
74. Iwata H, Ueda Y. Pharmacokinetic considerations in development of a bioartificial liver. Clin Pharmacokinet. 2004; 43:211–225. PMID: 15005636.
Article
75. Bernard MP, Chu ML, Myers JC, Ramirez F, Eikenberry EF, Prockop DJ. Nucleotide sequences of complementary deoxyribonucleic acids for the pro alpha 1 chain of human type I procollagen. Statistical evaluation of structures that are conserved during evolution. Biochemistry. 1983; 22:5213–5223. DOI: 10.1021/bi00291a023. PMID: 6689127.
Article
76. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011; 32:3233–3243. DOI: 10.1016/j.biomaterials.2011.01.057. PMID: 21296410. PMCID: 3084613.
Article
77. Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, Milwid J, Kobayashi N, Tilles A, Berthiaume F, Hertl M, Nahmias Y, Yarmush ML, Uygun K. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010; 16:814–820. PMID: 20543851. PMCID: 2930603.
Article
78. Soto-Gutierrez A, Zhang L, Medberry C, Fukumitsu K, Faulk D, Jiang H, Reing J, Gramignoli R, Komori J, Ross M, Nagaya M, Lagasse E, Stolz D, Strom SC, Fox IJ, Badylak SF. A whole-organ regenerative medicine approach for liver replacement. Tissue Eng Part C Methods. 2011; 17:677–686. PMID: 21375407. PMCID: 3103054.
Article
79. Baptista PM, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, Soker S. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology. 2011; 53:604–617. DOI: 10.1002/hep.24067. PMID: 21274881.
Article
80. Barakat O, Abbasi S, Rodriguez G, Rios J, Wood RP, Ozaki C, Holley LS, Gauthier PK. Use of decellularized porcine liver for engineering humanized liver organ. J Surg Res. 2012; 173:e11–e25.
Article
81. Guillemot F, Mironov V, Nakamura M. Bioprinting is coming of age: Report from the International Conference on Bioprinting and Biofabrication in Bordeaux (3B'09). Biofabrication. 2010; 2:010201. DOI: 10.1088/1758-5082/2/1/010201. PMID: 20811115.
Article
82. Klebe RJ. Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp Cell Res. 1988; 179:362–373. DOI: 10.1016/0014-4827(88)90275-3. PMID: 3191947.
Article
83. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. Organ printing: tissue spheroids as building blocks. Biomaterials. 2009; 30:2164–2174. DOI: 10.1016/j.biomaterials.2008.12.084. PMID: 19176247. PMCID: 3773699.
Article
84. Robbins JB, Gorgen V, Min P, Shepherd BR, Presnell SC. A novel in vitro three-dimensional bioprinted liver tissue system for drug development. FASEB J. 2013; 27(Meeting Abstract Supplement):872.12.
Article
85. Chang R, Emami K, Wu H, Sun W. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication. 2010; 2:045004. DOI: 10.1088/1758-5082/2/4/045004. PMID: 21079286.
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr