1.Hoang AM., Oates TW., Cochran DL. In vitro wound healing responses to enamel matrix derivative. J Periodontol. 2000. 71:1270–7.
Article
2.Chong CH., Carnes DL., Moritz AJ., Oates T., Ryu OH., Simmer J., Cochran DL. Human periodontal fibroblast response to enamel matrix derivative, amelogenin, and platelet-derived growth factor-BB. J Periodontol. 2006. 77:1242–52.
Article
3.Slavkin HC. Towards a cellular and molecular understanding of periodontics. Cementogenesis revisited. J Periodontol. 1976. 47:249–55.
Article
4.Gestrelius S., Andersson C., Lidström D., Hammarström L., Somerman M. In vitro studies on periodontal ligament cells and enamel matrix derivative. J Clin Periodontol. 1997. 24:685–92.
Article
5.Hammarström L. Enamel matrix, cementum development and regeneration. J Clin Periodontol. 1997. 24:658–68.
Article
6.Heijl L., Heden G., Svärdström G., Ostgren A. Enamel matrix derivative (EMDOGAIN) in the treatment of intrabony periodontal defects. J Clin Periodontol. 1997. 24:705–14.
Article
7.Froum SJ., Weinberg MA., Rosenberg E., Tarnow D. A comparative study utilizing open flap debridement with and without enamel matrix derivative in the treatment of periodontal intrabony defects: a 12-month re-entry study. J Periodontol. 2001. 72:25–34.
Article
8.Sculean A., Donos N., Miliauskaite A., Arweiler N., Brecx M. Treatment of intrabony defects with enamel matrix proteins or bioabsorbable membranes. A 4-year follow-up split-mouth study. J Periodontol. 2001. 72:1695–701.
Article
9.Van der Pauw MT., Van den Bos T., Everts V., Beertsen W. Enamel matrix-derived protein stimulates attachment of periodontal ligament fibroblasts and enhances alkaline phosphatase activity and transforming growth factor beta1 release of periodontal ligament and gingival fibroblasts. J Periodontol. 2000. 71:31–43.
10.Melcher AH. On the repair potential of periodontal tissues. J Periodontol. 1976. 47:256–60.
Article
11.Boyan LA., Bhargava G., Nishimura F., Orman R., Price R., Terranova VP. Mitogenic and chemotactic responses of human periodontal ligament cells to the different isoforms of platelet-derived growth factor. J Dent Res. 1994. 73:1593–600.
Article
12.Lyngstadaas SP., Lundberg E., Ekdahl H., Andersson C., Gestrelius S. Autocrine growth factors in human periodontal ligament cells cultured on enamel matrix derivative. J Clin Periodontol. 2001. 28:181–8.
Article
13.Grandin HM., Gemperli AC., Dard M. Enamel matrix derivative: a review of cellular effects in vitro and a model of molecular arrangement and functioning. Tissue Eng Part B Rev. 2012. 18:181–202.
14.Schlueter SR., Carnes DL., Cochran DL. In vitro effects of enamel matrix derivative on microvascular cells. J Periodontol. 2007. 78:141–51.
Article
15.Mirastschijski U., Konrad D., Lundberg E., Lyngstadaas SP., Jorgensen LN., Agren MS. Effects of a topical enamel matrix derivative on skin wound healing. Wound Repair Regen. 2004. 12:100–8.
16.Pfeilschifter J., Oechsner M., Naumann A., Gronwald RG., Minne HW., Ziegler R. Stimulation of bone matrix apposition in vitro by local growth factors: a comparison between insulin-like growth factor I, platelet-derived growth factor, and transforming growth factor beta. Endocrinology. 1990. 127:69–75.
17.Gao J., Symons AL., Bartold PM. Expression of transforming growth factor-beta receptors types II and III within various cells in the rat periodontium. J Periodontal Res. 1999. 34:113–22.
Article
18.Hobbs HC., Rowe DJ., Johnson PW. Periodontal ligament cells from insulin-dependent diabetics exhibit altered alkaline phosphatase activity in response to growth factors. J Periodontol. 1999. 70:736–42.
Article