Restor Dent Endod.  2014 May;39(2):89-94.

Cytotoxicity and physical properties of tricalcium silicate-based endodontic materials

Affiliations
  • 1Department of Conservative Dentistry, Chonnam National University School of Dentistry and Dental Science Research Institute, Gwangju, Korea. ychwang@chonnam.ac.kr
  • 2Department of Pharmacology and Dental Therapeutics, Chonnam National University School of Dentistry and Dental Science Research Institute, Gwangju, Korea.
  • 3Department of Dental Materials, Chonnam National University School of Dentistry and Dental Science Research Institute, Gwangju, Korea.
  • 4University of Michigan School of Dentistry, Ann Arbor, MI, USA.
  • 5Research Center for Biomineralization Disorders, Chonnam National University, Gwangu, Korea.

Abstract


OBJECTIVES
The aim of this study was to evaluate the cytotoxicity, setting time and compressive strength of MTA and two novel tricalcium silicate-based endodontic materials, Bioaggregate (BA) and Biodentine (BD).
MATERIALS AND METHODS
Cytotoxicity was evaluated by using a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-((phenylamino)carbonyl)-2H-tetrazolium hydroxide (XTT) assay. Measurements of 9 heavy metals (arsenic, cadmium, chromium, copper, iron, lead, manganese, nickel, and zinc) were performed by inductively coupled plasma-mass spectrometry (ICP-MS) of leachates obtained by soaking the materials in distilled water. Setting time and compressive strength tests were performed following ISO requirements.
RESULTS
BA had comparable cell viability to MTA, whereas the cell viability of BD was significantly lower than that of MTA. The ICP-MS analysis revealed that BD released significantly higher amount of 5 heavy metals (arsenic, copper, iron, manganese, and zinc) than MTA and BA. The setting time of BD was significantly shorter than that of MTA and BA, and the compressive strength of BA was significantly lower than that of MTA and BD.
CONCLUSIONS
BA and BD were biocompatible, and they did not show any cytotoxic effects on human periodontal ligament fibroblasts. BA showed comparable cytotoxicity to MTA but inferior physical properties. BD had somewhat higher cytotoxicity but superior physical properties than MTA.

Keyword

Bioaggregate; Biodentine; Compressive strength; Cytotoxicity; MTA; Setting time

MeSH Terms

Cadmium
Cell Survival
Chromium
Compressive Strength
Copper
Fibroblasts
Humans
Iron
Manganese
Metals, Heavy
Nickel
Periodontal Ligament
Spectrum Analysis
Water
Pemetrexed
Cadmium
Chromium
Copper
Iron
Manganese
Metals, Heavy
Nickel
Water

Figure

  • Figure 1 The cytotoxic effects of test material extracts on hPDL fibroblasts. The percentage of cell viability in the control group (media only group) represented 100%. There was no significantly different compared to the DMEM control. MTA, mineral trioxide aggregate; BA, Bioaggregate; BD, Biodentine.


Reference

1. Cohen S, Hargreaves KM. Chapter 21. Cohen's pathways of the pulp. 10th ed. St Louis: Mosby Elsevier;2011.
2. Johnson BR. Considerations in the selection of a rootend filling material. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999; 87:398–404.
Article
3. Saxena P, Gupta SK, Newaskar V. Biocompatibility of root-end filling materials: recent update. Restor Dent Endod. 2013; 38:119–127.
Article
4. Torabinejad M, Hong CU, Pitt Ford TR, Kettering JD. Cytotoxicity of four root end filling materials. J Endod. 1995; 21:489–492.
Article
5. Torabinejad M, Higa RK, McKendry DJ, Pitt Ford TR. Dye leakage of four root end filling materials: effects of blood contamination. J Endod. 1994; 20:159–163.
Article
6. Koh ET, Torabinejad M, Pitt Ford TR, Brady K, McDonald F. Mineral trioxide aggregate stimulates a biological response in human osteoblasts. J Biomed Mater Res. 1997; 37:432–439.
Article
7. Torabinejad M, Hong CU, Lee SJ, Monsef M, Pitt Ford TR. Investigation of mineral trioxide aggregate for rootend filling in dogs. J Endod. 1995; 21:603–608.
Article
8. Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod. 1995; 21:349–353.
Article
9. Monteiro Bramante C, Demarchi AC, de Moraes IG, Bernadineli N, Garcia RB, Spångberg LS, Duarte MA. Presence of arsenic in different types of MTA and white and gray Portland cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008; 106:909–913.
Article
10. Chang SW, Shon WJ, Lee W, Kum KY, Baek SH, Bae KS. Analysis of heavy metal contents in gray and white MTA and 2 kinds of Portland cement: a preliminary study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010; 109:642–646.
Article
11. Maroto M, Barberia E, Planells P, Garcia Godoy F. Dentin bridge formation after mineral trioxide aggregate (MTA) pulpotomies in primary teeth. Am J Dent. 2005; 18:151–154.
12. Boutsioukis C, Noula G, Lambrianidis T. Ex vivo study of the efficiency of two techniques for the removal of mineral trioxide aggregate used as a root canal filling material. J Endod. 2008; 34:1239–1242.
Article
13. Chang SW. Chemical characteristics of mineral trioxide aggregate and its hydration reaction. Restor Dent Endod. 2012; 37:188–193.
Article
14. Innovative BioCeramix, Inc.: Information. updated 2012 Jan. Available from: http://www.ibioceramix.com/Publications.html.
15. Active Biosilicate Technology, Septodont. septodontusa.com. updated 2013 Oct 10. Available from: http://www.septodontusa.com/products/biodentine.
16. Park JW, Hong SH, Kim JH, Lee SJ, Shin SJ. X-ray diffraction analysis of white ProRoot MTA and Diadent BioAggregate. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010; 109:155–158.
Article
17. Zhang H, Pappen FG, Haapasalo M. Dentin enhances the antibacterial effect of mineral trioxide aggregate and bioaggregate. J Endod. 2009; 35:221–224.
Article
18. De-Deus G, Canabarro A, Alves G, Linhares A, Senne MI, Granjeiro JM. Optimal cytocompatibility of a bioceramic nanoparticulate cement in primary human mesenchymal cells. J Endod. 2009; 35:1387–1390.
Article
19. Yuan Z, Peng B, Jiang H, Bian Z, Yan P. Effect of bioaggregate on mineral-associated gene expression in osteoblast cells. J Endod. 2010; 36:1145–1148.
Article
20. Chung CR, Kim E, Shin SJ. Biocompatibility of bioaggregate cement on human pulp and periodontal ligament (PDL) derived cells. J Korean Acad Conserv Dent. 2010; 35:473–478.
Article
21. Yan P, Yuan Z, Jiang H, Peng B, Bian Z. Effect of bioaggregate on differentiation of human periodontal ligament fibroblasts. Int Endod J. 2010; 43:1116–1121.
Article
22. Grech L, Mallia B, Camilleri J. Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater. 2013; 29:e20–e28.
Article
23. Laurent P, Camps J, De Méo M, Déjou J, About I. Induction of specific cell responses to a Ca(3)SiO(5)-based posterior restorative material. Dent Mater. 2008; 24:1486–1494.
Article
24. Laurent P, Camps J, About I. Biodentine(TM) induces TGF-β1 release from human pulp cells and early dental pulp mineralization. Int Endod J. 2012; 45:439–448.
Article
25. Peng W, Liu W, Zhai W, Jiang L, Li L, Chang J, Zhu Y. Effect of tricalcium silicate on the proliferation and odontogenic differentiation of human dental pulp cells. J Endod. 2011; 37:1240–1246.
Article
26. ISO-Standards ISO 9917-1:2007. Dentistry-Water-based cements-Part 1: powder/liquid acid-base cements. Geneve: International Organization for Standardization;2007.
27. Ma J, Shen Y, Stojicic S, Haapasalo M. Biocompatibility of two novel root repair materials. J Endod. 2011; 37:793–798.
Article
28. Camilleri J, Kralj P, Veber M, Sinagra E. Characterization and analyses of acid-extractable and leached trace elements in dental cements. Int Endod J. 2012; 45:737–743.
Article
29. Chang SW, Baek SH, Yang HC, Seo DG, Hong ST, Han SH, Lee Y, Gu Y, Kwon HB, Lee W, Bae KS, Kum KY. Heavy metal analysis of ortho MTA and ProRoot MTA. J Endod. 2011; 37:1673–1676.
Article
30. Sienko MJ, Plane RA. Chemistry. 5th ed. New York: McGraw-Hill;1976. p. 363–398.
31. Camilleri J, Montesin FE, Brady K, Sweeney R, Curtis RV, Ford TR. The constitution of mineral trioxide aggregate. Dent Mater. 2005; 21:297–303.
Article
32. Wang X, Sun H, Chang J. Characterization of Ca3SiO5/CaCl2 composite cement for dental application. Dent Mater. 2008; 24:74–82.
Article
33. Huan Z, Chang J. Study on physicochemical properties and in vitro bioactivity of tricalcium silicate-calcium carbonate composite bone cement. J Mater Sci Mater Med. 2008; 19:2913–2918.
Article
34. Lee BN, Hwang YC, Jang JH, Chang HS, Hwang IN, Yang SY, Park YJ, Son HH, Oh WM. Improvement of the properties of mineral trioxide aggregate by mixing with hydration accelerators. J Endod. 2011; 37:1433–1436.
Article
35. Neville AM. Properties of concrete. 3rd ed. New York: Longman Scientific and Technical;1981. p. 269–351.
Full Text Links
  • RDE
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr