1. Lin MH, Wu MC, Lu S, Lin J. Glycemic index, glycemic load and insulinemic index of Chinese starchy foods. World J Gastroenterol. 2010. 16:4973–4979.
Article
2. Brand-Miller JC, Holt SH, Pawlak DB, McMillan J. Glycemic index and obesity. Am J Clin Nutr. 2002. 76:281S–285S.
Article
3. Natarajan P, Ray KK, Cannon CP. High-density lipoprotein and coronary heart disease: current and future therapies. J Am Coll Cardiol. 2010. 55:1283–1299.
4. Kendall CW, Josse AR, Esfahani A, Jenkins DJ. Nuts, metabolic syndrome and diabetes. Br J Nutr. 2010. 104:465–473.
Article
5. Giovannucci E. Insulin, insulin-like growth factors and colon cancer: a review of the evidence. J Nutr. 2001. 131:3109S–3120S.
Article
6. Minich DM, Bland JS. Dietary management of the metabolic syndrome beyond macronutrients. Nutr Rev. 2008. 66:429–444.
Article
7. Choi SS, Rhee WJ, Park TH. Inhibition of human cell apoptosis by silkworm hemolymph. Biotechnol Prog. 2002. 18:874–878.
Article
8. Choi SS, Rhee WJ, Park TH. Beneficial effect of silkworm hemolymph on a CHO cell system: Inhibition of apoptosis and increase of EPO production. Biotechnol Bioeng. 2005. 91:793–800.
Article
9. Choi SS, Rhee WJ, Kim EJ, Park TH. Enhancement of recombinant protein production in Chinese hamster ovary cells through anti-apoptosis engineering using
30Kc6 gene. Biotechnol Bioeng. 2006. 95:459–467.
Article
10. Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode
C. elegans. Cell. 1986. 44:817–829.
Article
11. Yuan JY, Horvitz HR. The
Caenorhabditis elegans genes
ced-3 and
ced-4 act cell autonomously to cause programmed cell death. Dev Biol. 1990. 138:33–41.
Article
12. Hengartner MO, Ellis RE, Horvitz HR.
Caenorhabditis elegans gene
ced-9 protects cells from programmed cell death. Nature. 1992. 356:494–499.
Article
13. Hengartner MO, Horvitz HR. Activation of
C. elegans cell death protein CED-9 by an amino-acid substitution in a domain conserved in Bcl-2. Nature. 1994. 369:318–320.
Article
14. Potts MB, Cameron S. Cell lineage and cell death:
Caenorhabditis elegans and cancer research. Nat Rev Cancer. 2011. 11:50–58.
Article
15. Lamitina T. Functional genomic approaches in C. elegans. Methods Mol Biol. 2006. 351:127–138.
16. Hsu AL, Murphy CT, Kenyon C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science. 2003. 300:1142–1145.
Article
17. Gumienny TL, Lambie E, Hartwieg E, Horvitz HR, Hengartner MO. Genetic control of programmed cell death in the
Caenorhabditis elegans hermaphrodite germline. Development. 1999. 126:1011–1022.
Article
18. Lee SJ, Murphy CT, Kenyon C. Glucose shortens the life span of
C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. Cell Metab. 2009. 10:379–391.
Article
19. Zhao H, Liu G, Wang Q, Ding L, Cai H, Jiang H, Xin Z. Effect of ghrelin on human endothelial cells apoptosis induced by high glucose. Biochem Biophys Res Commun. 2007. 362:677–681.
Article
20. Partridge L. Some highlights of research on aging with invertebrates, 2010. Aging Cell. 2011. 10:5–9.
Article
21. Hoffman DJ. Early nutrition and adult health: perspectives for international and community nutrition programs and policies. Nutr Res Pract. 2010. 4:449–454.
Article
22. Cheong MC, Na K, Kim H, Jeong SK, Joo HJ, Chitwood DJ, Paik YK. A potential biochemical mechanism underlying the influence of sterol deprivation stress on
Caenorhabditis elegans longevity. J Biol Chem. 2011. 286:7248–7256.
Article
23. Steinkraus KA, Smith ED, Davis C, Carr D, Pendergrass WR, Sutphin GL, Kennedy BK, Kaeberlein M. Dietary restriction suppresses proteotoxicity and enhances longevity by an hsf-1-dependent mechanism in
Caenorhabditis elegans. Aging Cell. 2008. 7:394–404.
Article