Nutr Res Pract.  2010 Apr;4(2):93-98.

Protection by Chrysanthemum zawadskii extract from liver damage of mice caused by carbon tetrachloride is maybe mediated by modulation of QR activity

Affiliations
  • 1Department of Animal Science and Biotechnology and School of Applied Biosciences, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu 702-701, Korea. vision@knu.ac.kr
  • 2Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Korea.
  • 3Department of Human Ecology, KyungSung University, Busan 608-736, Korea.

Abstract

Our previous study demonstrated that methanolic extract of Chrysanthemum zawadskii Herbich var. latilobum Kitamura (Compositae) has the potential to induce detoxifying enzymes such as NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) (NQO1, QR) and glutathione S-transferase (GST). In this study we further fractionated methanolic extract of Chrysanthemum zawadskii and investigated the detoxifying enzyme-inducing potential of each fraction. The fraction (CZ-6) shown the highest QR-inducing activity was found to contain (+)-(3S,4S,5R,8S)-(E)-8-acetoxy-4-hydroxy-3-isovaleroyloxy-2-(hexa-2,4-diynyliden)-1,6-dioxaspiro [4,5] decane and increased QR enzyme activity in a dose-dependent manner. Furthermore, CZ-6 fraction caused a dose-dependent enhancement of luciferase activity in HepG2-C8 cells generated by stably transfecting antioxidant response element-luciferase gene construct, suggesting that it induces antioxidant/detoxifying enzymes through antioxidant response element (ARE)-mediated transcriptional activation of the relevant genes. Although CZ-6 fraction failed to induce hepatic QR in mice over the control, it restored QR activity suppressed by CCl4 treatment to the control level. Hepatic injury induced by CCl4 was also slightly protected by pretreatment with CZ-6. In conclusion, although CZ-6 fractionated from methanolic extract of Chrysanthemum zawadskii did not cause a significant QR induction in mice organs such as liver, kidney, and stomach, it showed protective effect from liver damage caused by CCl4.

Keyword

Quinone reductase; detoxifying enzymes; Chrysanthemum zawadskii; (+)-(3S,4S,5R,8S)-(E)-8-acetoxy-4-hydroxy-3-isovaleroyloxy-2-(hexa-2,4-diynyliden)-1,6-dioxaspiro[4,5]decane; carbon tetrachloride-induced liver injury

MeSH Terms

Alkanes
Animals
Antioxidant Response Elements
Carbon
Carbon Tetrachloride
Chrysanthemum
Glutathione Transferase
Kidney
Liver
Luciferases
Methanol
Mice
NAD(P)H Dehydrogenase (Quinone)
Stomach
Transcriptional Activation
Alkanes
Carbon
Carbon Tetrachloride
Glutathione Transferase
Luciferases
Methanol
NAD(P)H Dehydrogenase (Quinone)

Figure

  • Fig. 1 Structure of (+)-(3S,4S,5R,8S)-(E)-8-acetoxy-4-hydroxy-3-isovaleroyloxy-2-(hexa-2,4-diynyliden)-1,6-dioxaspiro[4,5]decane isolated from Chrysanthemum zawadskii

  • Fig. 2 Induction of quinone reductase by CZ-6 fraction in Hepa1c1c7 (A) and BPRc1 cells. After culturing 48 h in alpha-MEM containing 10% FBS, cells were exposed to various doses of CZ-6 fraction for another 24 h and subjected to QR assay.

  • Fig. 3 Dose-dependent increase of reporter luciferase activity in HepG2-C8 cells by CZ-6 fraction. HepG2-C8 cells stably transfected with pARE-TI-luciferase construct were exposed to various doses of CZ-6 and assayed for luciferase activity using luminometer.

  • Fig. 4 >Effect of treatment of carbon tetrachloride and CZ-6 fraction on body (A) and organ (B) weights of mice. Mice weighing 20-30 g were insulted with CCl4 twice (7th and 9th days) in a week with and without CZ-6, and weighed for body and organs on 11th day after initiating the study.

  • Fig. 5 Effect of CCl4 and CZ-6 fraction on QR activities in mouse organs. Mice weighing 20-30 g were insulted with CCl4 twice (7th and 9th days) in a week with and without CZ-6, and assayed for QR activities of tissues on 11th day after initiating the study.

  • Fig. 6 Liver histology in mice after CCl4 and CZ-6 treatments. The method for the administration of CZ-6 and induction of liver injury are described in 'Materials and Methods' section. The liver sections obtained from the mice were subjected to hematoxylin-eosin staining. Arrows indicate necrotic areas.


Reference

1. Kwon HS, Ha TJ, Hwang SW, Jin YM, Nam SH, Park KH, Yang MS. Cytotoxic flavonoids from the whole plants of Chrysanthemum zawadskii Herbich var. latilobum Kitamura. J Life Sci. 2006. 16:746–749.
Article
2. Kang HS, Park MJ, Jin KS, Kim YH, Jun M, Lim HJ, Jo WK, Kim JS, Jeong WS. Regulatory roles of Chrysanthemum zawadskii roots in nuclear factor E2-related factor 2/antioxidant response element pathway. Food Sci Biotechnol. 2008. 17:367–372.
3. Kim JR, Kim JH, Lim HA, Jang CH, Kim JH, Kwon CS, Kim YK, Kim JS. Induction of quinone reductase, an anticarcinogenic marker enzyme, by extract from Chrysanthemum zawadskii var. latilobum K. Journal of Food Science and Nutrition. 2005. 10:340–343.
Article
4. Mehta RG, Pezzuto JM. Discovery of cancer preventive agents from natural products: from plants to prevention. Curr Oncol Rep. 2002. 4:478–486.
Article
5. Balogun E, Hoque M, Gong P, Killeen E, Green CJ, Foresti R, Alam J, Motterlini R. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J. 2003. 371:887–895.
Article
6. Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, Talalay P. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A. 2002. 99:11908–11913.
Article
7. Prochaska HJ, De Long MJ, Talalay P. On the mechanisms of induction of cancer-protective enzymes: a unifying proposal. Proc Natl Acad Sci U S A. 1985. 82:8232–8236.
Article
8. Zhang Y, Talalay P, Cho CG, Posner GH. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci U S A. 1992. 89:2399–2403.
Article
9. Kim BR, Hu R, Keum YS, Hebbar V, Shen G, Nair SS, Kong AN. Effects of glutathione on antioxidant response element-mediated gene expression and apoptosis elicited by sulforaphane. Cancer Res. 2003. 63:7520–7525.
10. Benson AM, Hunkeler MJ, Talalay P. Increase of NAD(P) H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci U S A. 1980. 77:5216–5220.
Article
11. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951. 193:265–275.
Article
12. Proctor E, Chatamra K. High yield micronodular cirrhosis in the rat. Gastroenterology. 1982. 83:1183–1190.
Article
13. Yin H-Q, Lee BW, Kim YC, Sohn DH, Lee BH. Induction of the anticarcinogenic marker enzyme, quinone reductase, by Dalbergiae Lignum. Arch Pharm Res. 2004. 27:919–922.
Article
14. Kim JH, Lee JS, Song KS, Kwon CS, Kim YK, Kim JS. Polyozellin isolated from Polyozellus multiplex induces phase 2 enzymes in mouse hepatoma cells and differentiation in human myeloid leukaemic cell lines. J Agric Food Chem. 2004. 52:451–455.
Article
15. Seo JY, Park J, Kim HJ, Lee IA, Lim JS, Lim SS, Choi SJ, Park JH, Kang HJ, Kim JS. Isoalantolactone from Inula helenium caused Nrf2-mediated induction of detoxifying enzymes. J Med Food. 2009. 12:1038–1045.
Article
16. Seo JY, Lim SS, Kim JR, Lim JS, Ha YR, Lee IA, Kim EJ, Park JH, Kim JS. Nrf2-mediated induction of detoxifying enzymes by alantolactone present in Inula helenium. Phytother Res. 2008. 22:1500–1505.
Article
17. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997. 236:313–322.
Article
18. Kobayashi M, Li L, Iwamoto N, Nakajima-Takagi Y, Kaneko H, Nakayama Y, Eguchi M, Wada Y, Kumagai Y, Yamamoto M. The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol Cell Biol. 2009. 29:493–502.
Article
19. Wong F, Chan WY, Lee SS. Resistance to carbon tetrachloride-induced hepatotoxicity in mice which lack CYP2E1 expression. Toxicol Appl Pharmacol. 1998. 153:109–118.
Article
20. Albano E, Tomasi A, Goria-Gatti L, Poli G, Vannini V, Dianzani MU. Free radical metabolism of alcohols by rat liver microsomes. Free Radic Res Commun. 1987. 3:243–249.
Article
21. Connor HD, Lacagnin LB, Knecht KT, Thurman RG, Mason RP. Reaction of glutathione with a free radical metabolite of carbon tetrachloride. Mol Pharmacol. 1990. 37:443–451.
22. McCay PB, Lai EK, Poyer JL, DuBose CM, Janzen EG. Oxygen- and carbon-centered free radical formation during carbon tetrachloride metabolism: Observation of lipid radicals in vivo and in vitro. J Biol Chem. 1984. 259:2135–2143.
Article
23. Packer JE, Slater TF, Willson RL. Reactions of the carbon tetrachloride-related peroxy free radical (CCl3O2.) with amino acids: Pulse radiolysis evidence. Life Sci. 1978. 23:2617–2620.
Article
24. Slater TF. Free-radical mechanisms in tissue injury. Biochem J. 1984. 222:1–15.
Article
25. Recknagel RO. Carbon tetrachloride hepatotoxicity. Pharmacol Rev. 1967. 19:145–208.
Full Text Links
  • NRP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr