Lab Anim Res.  2013 Sep;29(3):131-137. 10.5625/lar.2013.29.3.131.

Development and application of neural stem cells for treating various human neurological diseases in animal models

Affiliations
  • 1Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea. kchoi@cbu.ac.kr
  • 2Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
  • 3Medical Research Institute, College of Medicine, Chung-Ang University, Seoul, Korea.

Abstract

Stem cells derived from adult tissues or the inner cell mass (ICM) of embryos in the mammalian blastocyst (BL) stage are capable of self-renewal and have remarkable potential for undergoing lineage-specific differentiation under in vitro culturing conditions. In particular, neural stem cells (NSCs) that self-renew and differentiate into major cell types of the brain exist in the developing and adult central nervous system (CNS). The exact function and distribution of NSCs has been assessed, and they represent an interesting population that includes astrocytes, oligodendrocytes, and neurons. Many researchers have demonstrated functional recovery in animal models of various neurological diseases such as stroke, Parkinson's disease (PD), brain tumors, and metastatic tumors. The safety and efficacy of stem cell-based therapies (SCTs) are also being evaluated in humans. The therapeutic efficacy of NSCs has been shown in the brain disorder-induced animal models, and animal models may be well established to perform the test before clinical stage. Taken together, data from the literature have indicated that therapeutic NSCs may be useful for selectively treating diverse types of human brain diseases without incurring adverse effects.

Keyword

Neural stem cells; Parkinson's disease; stroke; brain tumor; metastatic tumor

MeSH Terms

Adult
Animals
Astrocytes
Blastocyst
Brain
Brain Diseases
Brain Neoplasms
Central Nervous System
Embryonic Structures
Humans
Models, Animal
Neural Stem Cells
Neurons
Oligodendroglia
Parkinson Disease
Stem Cells
Stroke

Figure

  • Figure 1 Application of neural stem cells (NSCs) therapies. NSCs the self-renew and differentiate into major cell types of the brain exist, such as astrocytes, oligodendrocytes, and neurons, in the developing and adult central nervous system (CNS). There have been describing the effects of NSC transplantation for achieving functional recovery from CNS damage. Therefore, NSCs may be a suitable component for treating neurological diseases such as stroke, Parkinson's diseases (PD), brain tumors, primary and metastatic tumors. GFAP; glial fibrillary acidic protein, RC2: radial glial cell marker, 6-OHDA; 6-hydroxydopamine, MPTP; 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine.


Reference

1. Pauklin S, Pedersen RA, Vallier L. Mouse pluripotent stem cells at a glance. J Cell Sci. 2011; 124(Pt 22):3727–3732. PMID: 22124139.
Article
2. Ogawa K, Saito A, Matsui H, Suzuki H, Ohtsuka S, Shimosato D, Morishita Y, Watabe T, Niwa H, Miyazono K. Activin-Nodal signaling is involved in propagation of mouse embryonic stem cells. J Cell Sci. 2007; 120(Pt 1):55–65. PMID: 17182901.
Article
3. Dado D, Sagi M, Levenberg S, Zemel A. Mechanical control of stem cell differentiation. Regen Med. 2012; 7(1):101–116. PMID: 22168501.
Article
4. Maul TM, Chew DW, Nieponice A, Vorp DA. Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. Biomech Model Mechanobiol. 2011; 10(6):939–953. PMID: 21253809.
Article
5. Ying QL, Stavridis M, Griffiths D, Li M, Smith A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol. 2003; 21(2):183–186. PMID: 12524553.
Article
6. Soncin F, Mohamet L, Eckardt D, Ritson S, Eastham AM, Bobola N, Russell A, Davies S, Kemler R, Merry CL, Ward CM. Abrogation of E-cadherin-mediated cell-cell contact in mouse embryonic stem cells results in reversible LIF-independent selfrenewal. Stem Cells. 2009; 27(9):2069–2080. PMID: 19544408.
Article
7. Harting MT, Jimenez F, Xue H, Fischer UM, Baumgartner J, Dash PK, Cox CS. Intravenous mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg. 2009; 110(6):1189–1197. PMID: 19301973.
Article
8. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981; 292(5819):154–156. PMID: 7242681.
Article
9. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998; 282(5391):1145–1147. PMID: 9804556.
Article
10. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000; 18(4):399–404. PMID: 10748519.
Article
11. Smith AG. Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol. 2001; 17:435–462. PMID: 11687496.
Article
12. Ying QL, Nichols J, Chambers I, Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell. 2003; 115(3):281–292. PMID: 14636556.
Article
13. Vallier L, Alexander M, Pedersen RA. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci. 2005; 118(Pt 19):4495–4509. PMID: 16179608.
Article
14. Anneren C, Cowan CA, Melton DA. The Src family of tyrosine kinases is important for embryonic stem cell self-renewal. J Biol Chem. 2004; 279(Number):31590–31598. PMID: 15148312.
15. Paling NR, Wheadon H, Bone HK, Welham MJ. Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling. J Biol Chem. 2004; 279(46):48063–48070. PMID: 15328362.
Article
16. Kørbling M, Estrov Z. Adult stem cells for tissue repair - a new therapeutic concept? N Engl J Med. 2003; 349(6):570–582. PMID: 12904523.
Article
17. Verfaillie CM. Adult stem cells: assessing the case for pluripotency. Trends Cell Biol. 2002; 12(11):502–508. PMID: 12446111.
Article
18. Lee C, Hu J, Ralls S, Kitamura T, Loh YP, Yang Y, Mukouyama YS, Ahn S. The molecular profiles of neural stem cell niche in the adult subventricular zone. PLoS One. 2012; 7(11):e50501. PMID: 23209762.
Article
19. Galli R, Gritti A, Bonfanti L, Vescovi AL. Neural stem cells: an overview. Circ Res. 2003; 92(6):598–608. PMID: 12676811.
20. Ming GL, Song H. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci. 2005; 28:223–250. PMID: 16022595.
Article
21. Alvarez-Buylla A, Lim DA. For the long run: maintaining germinal niches in the adult brain. Neuron. 2004; 41(5):683–686. PMID: 15003168.
22. Martino G, Pluchino S. The therapeutic potential of neural stem cells. Nat Rev Neurosci. 2006; 7(5):395–406. PMID: 16760919.
Article
23. Mu Y, Lee SW, Gage FH. Signaling in adult neurogenesis. Curr Opin Neurobiol. 2010; 20(4):416–423. PMID: 20471243.
Article
24. Pluchino S, Zanotti L, Deleidi M, Martino G. Neural stem cells and their use as therapeutic tool in neurological disorders. Brain Res Brain Res Rev. 2005; 48(2):211–219. PMID: 15850660.
Article
25. Davenport R, Dennis M. Neurological emergencies: acute stroke. J Neurol Neurosurg Psychiatry. 2000; 68(3):277–288. PMID: 10675208.
Article
26. Lindvall O, Kokaia Z. Stem cells in human neurodegenerative disorders--time for clinical translation? J Clin Invest. 2010; 120(1):29–40. PMID: 20051634.
27. Riolobos AS, Heredia M, de la Fuente JA, Criado JM, Yajeya J, Campos J, Santacana M. Functional recovery of skilled forelimb use in rats obliged to use the impaired limb after grafting of the frontal cortex lesion with homotopic fetal cortex. Neurobiol Learn Mem. 2001; 75(3):274–292. PMID: 11300734.
Article
28. Ding DC, Shyu WC, Chiang MF, Lin SZ, Chang YC, Wang HJ, Su CY, Li H. Enhancement of neuroplasticity through upregulation of beta1-integrin in human umbilical cord-derived stromal cell implanted stroke model. Neurobiol Dis. 2007; 27(3):339–353. PMID: 17651977.
29. Jeong SW, Chu K, Jung KH, Kim SU, Kim M, Roh JK. Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke. 2003; 34(9):2258–2263. PMID: 12881607.
Article
30. Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, Masel J, Yenari MA, Weissman IL, Uchida N, Palmer T, Steinberg GK. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci U S A. 2004; 101(32):11839–11844. PMID: 15280535.
Article
31. Tanaka N, Sasahara M, Ohno M, Higashiyama S, Hayase Y, Shimada M. Heparin-binding epidermal growth factor-like growth factor mRNA expression in neonatal rat brain with hypoxic/ischemic injury. Brain Res. 1999; 827(1-2):130–138. PMID: 10320701.
Article
32. Zhang R, Zhang Z, Wang L, Wang Y, Gousev A, Zhang L, Ho KL, Morshead C, Chopp M. Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. J Cereb Blood Flow Metab. 2004; 24(4):441–448. PMID: 15087713.
Article
33. Ohab JJ, Fleming S, Blesch A, Carmichael ST. A neurovascular niche for neurogenesis after stroke. J Neurosci. 2006; 26(50):13007–13016. PMID: 17167090.
Article
34. Ding DC, Lin CH, Shyu WC, Lin SZ. Neural Stem Cells and Stroke. Cell Transplant. 2013; 22(4):619–630. PMID: 23127719.
Article
35. Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C. PI3K/Akt and apoptosis: size matters. Oncogene. 2003; 22(56):8983–8998. PMID: 14663477.
Article
36. Chong ZZ, Kang JQ, Maiese K. Erythropoietin fosters both intrinsic and extrinsic neuronal protection through modulation of microglia, Akt1, Bad, and caspase-mediated pathways. Br J Pharmacol. 2003; 138(6):1107–1118. PMID: 12684267.
Article
37. Lee HJ, Kim MK, Kim HJ, Kim SU. Human neural stem cells genetically modified to overexpress Akt1 provide neuroprotection and functional improvement in mouse stroke model. PLoS One. 2009; 4(5):e5586. PMID: 19440551.
Article
38. Storch A, Schwarz J. Neural stem cells and Parkinson's disease. J Neurol. 2002; 249(Suppl 3):III/30–III/32.
Article
39. Przedborski S. Pathogenesis of nigral cell death in Parkinson's disease. Parkinsonism Relat Disord. 2005; 11(Suppl 1):S3–S7. PMID: 15885625.
Article
40. Martin HL, Teismann P. Glutathione--a review on its role and significance in Parkinson's disease. FASEB J. 2009; 23(10):3263–3272. PMID: 19542204.
Article
41. Dickinson DA, Forman HJ. Cellular glutathione and thiols metabolism. Biochem Pharmacol. 2002; 64(5-6):1019–1026. PMID: 12213601.
Article
42. Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron. 2003; 39(6):889–909. PMID: 12971891.
43. Yasuhara T, Matsukawa N, Hara K, Yu G, Xu L, Maki M, Kim SU, Borlongan CV. Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson's disease. J Neurosci. 2006; 26(48):12497–12511. PMID: 17135412.
Article
44. Kim SU, Park IH, Kim TH, Kim KS, Choi HB, Hong SH, Bang JH, Lee MA, Joo IS, Lee CS, Kim YS. Brain transplantation of human neural stem cells transduced with tyrosine hydroxylase and GTP cyclohydrolase 1 provides functional improvement in animal models of Parkinson disease. Neuropathology. 2006; 26(2):129–140. PMID: 16708545.
Article
45. Ovadia A, Zhang Z, Gash DM. Increased susceptibility to MPTP toxicity in middle-aged rhesus monkeys. Neurobiol Aging. 1995; 16(6):931–937. PMID: 8622784.
Article
46. Redmond DE Jr, Bjugstad KB, Teng YD, Ourednik V, Ourednik J, Wakeman DR, Parsons XH, Gonzalez R, Blanchard BC, Kim SU, Gu Z, Lipton SA, Markakis EA, Roth RH, Elsworth JD, Sladek JR Jr, Sidman RL, Snyder EY. Behavioral improvement in a primate Parkinson's model is associated with multiple homeostatic effects of human neural stem cells. Proc Natl Acad Sci U S A. 2007; 104(29):12175–12180. PMID: 17586681.
Article
47. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003; 63(18):5821–5828. PMID: 14522905.
48. Kim SU. Neural stem cell-based gene therapy for brain tumors. Stem Cell Rev. 2011; 7(1):130–140. PMID: 20521177.
Article
49. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, Breakefield XO, Snyder EY. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A. 2000; 97(23):12846–12851. PMID: 11070094.
Article
50. Barresi V, Belluardo N, Sipione S, Mudò G, Cattaneo E, Condorelli DF. Transplantation of prodrug-converting neural progenitor cells for brain tumor therapy. Cancer Gene Ther. 2003; 10(5):396–402. PMID: 12719709.
Article
51. Ehtesham M, Kabos P, Gutierrez MA, Chung NH, Griffith TS, Black KL, Yu JS. Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res. 2002; 62(24):7170–7174. PMID: 12499252.
52. Kim SK, Kim SU, Park IH, Bang JH, Aboody KS, Wang KC, Cho BK, Kim M, Menon LG, Black PM, Carroll RS. Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin Cancer Res. 2006; 12(18):5550–5556. PMID: 17000692.
Article
53. Kang NH, Yi BR, Lim SY, Hwang KA, Baek YS, Kang KS, Choi KC. Human amniotic membrane-derived epithelial stem cells display anticancer activity in BALB/c female nude mice bearing disseminated breast cancer xenografts. Int J Oncol. 2012; 40(6):2022–2028. PMID: 22344679.
Article
54. Kim KY, Yi BR, Lee HR, Kang NH, Jeung EB, Kim SU, Choi KC. Stem cells with fused gene expression of cytosine deaminase and interferon-β migrate to human gastric cancer cells and result in synergistic growth inhibition for potential therapeutic use. Int J Oncol. 2012; 40(4):1097–1104. PMID: 22159640.
Article
55. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005; 55(2):74–108. PMID: 15761078.
Article
56. Yi BR, Hwang KA, Kang NH, Kim SU, Jeung EB, Kim HC, Choi KC. Synergistic effects of genetically engineered stem cells expressing cytosine deaminase and interferon-β via their tumor tropism to selectively target human hepatocarcinoma cells. Cancer Gene Ther. 2012; 19(9):644–651. PMID: 22790964.
Article
57. Kang NH, Hwang KA, Yi BR, Lee HJ, Jeung EB, Kim SU, Choi KC. Human amniotic fluid-derived stem cells expressing cytosine deaminase and thymidine kinase inhibits the growth of breast cancer cells in cellular and xenograft mouse models. Cancer Gene Ther. 2012; 19(6):412–419. PMID: 22498724.
Article
58. Yi BR, Kang NH, Hwang KA, Kim SU, Jeung EB, Choi KC. Antitumor therapeutic effects of cytosine deaminase and interferon-β against endometrial cancer cells using genetically engineered stem cells in vitro. Anticancer Res. 2011; 31(9):2853–2861. PMID: 21868529.
59. Yi BR, Park MA, Lee HR, Kang NH, Choi KJ, Kim SU, Choi KC. Suppression of the growth of human colorectal cancer cells by therapeutic stem cells expressing cytosine deaminase and interferon-β via their tumor-tropic effect in cellular and xenograft mouse models. Mol Oncol. 2013; 7(3):543–554. PMID: 23403306.
60. Yi BR, Choi KJ, Kim SU, Choi KC. Therapeutic potential of stem cells expressing suicide genes that selectively target human breast cancer cells: evidence that they exert tumoricidal effects via tumor tropism (review). Int J Oncol. 2012; 41(3):798–804. PMID: 22736197.
61. Biswas G, Bhagwat R, Khurana R, Menon H, Prasad N, Parikh PM. Brain metastasis--evidence based management. J Cancer Res Ther. 2006; 2(1):5–13. PMID: 17998665.
62. Ma S, Xu Y, Deng Q, Yu X. Treatment of brain metastasis from non-small cell lung cancer with whole brain radiotherapy and Gefitinib in a Chinese population. Lung Cancer. 2009; 65(2):198–203. PMID: 19091441.
Article
63. Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol. 2004; 22(14):2865–2872. PMID: 15254054.
Article
64. Joo KM, Park IH, Shin JY, Jin J, Kang BG, Kim MH, Lee SJ, Jo MY, Kim SU, Nam DH. Human neural stem cells can target and deliver therapeutic genes to breast cancer brain metastases. Mol Ther. 2009; 17(3):570–575. PMID: 19127251.
Article
65. Zhao D, Najbauer J, Annala AJ, Garcia E, Metz MZ, Gutova M, Polewski MD, Gilchrist M, Glackin CA, Kim SU, Aboody KS. Human neural stem cell tropism to metastatic breast cancer. Stem Cells. 2012; 30(2):314–325. PMID: 22084033.
Article
66. Yi BR, Hwang KA, Kim YB, Kim SU, Choi KC. Effects of Genetically Engineered Stem Cells Expressing Cytosine Deaminase and Interferon-Beta or Carboxyl Esterase on the Growth of LNCaP Prostate Cancer Cells. Int J Mol Sci. 2012; 13(10):12519–12532. PMID: 23202910.
Article
67. Yi BR, Kim SU, Kim YB, Lee HJ, Cho MH, Choi KC. Antitumor effects of genetically engineered stem cells expressing yeast cytosine deaminase in lung cancer brain metastases via their tumor-tropic properties. Oncol Rep. 2012; 27(6):1823–1828. PMID: 22426744.
Article
68. Tang Y, Shah K, Messerli SM, Snyder E, Breakefield X, Weissleder R. In vivo tracking of neural progenitor cell migration to glioblastomas. Hum Gene Ther. 2003; 14(13):1247–1254. PMID: 12952596.
69. Vermes A, Guchelaar HJ, Dankert J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother. 2000; 46(2):171–179. PMID: 10933638.
Article
70. Okano H. Stem cell biology of the central nervous system. J Neurosci Res. 2002; 69(6):698–707. PMID: 12205662.
Article
71. Gage FH. Mammalian neural stem cells. Science. 2000; 287(5457):1433–1438. PMID: 10688783.
Article
Full Text Links
  • LAR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr