1). Rosnet O., Schiff C., Pebusque MJ, et al. Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. Blood. 1993. 82:1110–9.
Article
2). Small D., Levenstein M., Kim E, et al. STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc Natl Acad Sci USA. 1994. 91:459–63.
Article
3). Abu-Duhier FM., Goodeve AC., Wilson GA, et al. FLT3 internal tandem duplication mutations in adult acute myeloid leukemia define a high-risk group. Br J Haematol. 2000. 111:190–5.
4). Kottaridis PD., Gale RE., Frew ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001. 98:1752–9.
Article
5). Kiyoi H., Towatari M., Yokota S, et al. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia. 1998. 12:1333–7.
Article
6). Hayakawa F., Towatari M., Kiyoi H, et al. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene. 2000. 19:624–31.
Article
7). Tse KF., Mukherjee G., Small D. Constitutive activation of FLT3 stimulates multiple intracellular signal transducers and results in transformation. Leukemia. 2000. 14:1766–76.
Article
8). Ciolli S., Vannucchi AM., Leoni F, et al. Internal tandem duplications of Flt3 gene (FLT3/ITDs) predicts a poor post-remission outcome in adult patients with acute non-promyelocytic leukemia. Leuk Lymphoma. 2004. 45:73–8.
9). Kainz B., Heintel D., Marculescu R, et al. Variable prognostic value of FLT3 internal tandem duplications in patients with de novo AML and a normal karyotype, t(15;17), t(8;21) or inv(16). Hematol J. 2002. 3:283–9.
Article
10). Beran M., Luthra R., Kantarjian H., Estey E. FLT3 mutation and response to intensive chemotherapy in young adult and elderly patients with normal karyotype. Leuk Res. 2004. 28:547–50.
Article
11). Chillon MC., Fernandez C., Garcia-Sanz R, et al. FLT3-activating mutations are associated with poor prognostic features in AML at diagnosis but they are not an independent prognostic factor. Hematol J. 2004. 5:239–46.
Article
12). Cheson BD., Cassileth PA., Head DR, et al. Report of the National Cancer Institute-sponsored workshop on definitions of diagnosis and response in acute myeloid leukemia. J Clin Oncol. 1990. 8:813–9.
Article
13). Grimwade D., Walker H., Harrison G, et al. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood. 2001. 98:1312–20.
Article
14). Slovak ML., Kopecky KJ., Cassileth PA, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a southwest oncology group/eastern cooperative oncology group study. Blood. 2000. 96:4075–83.
Article
15). Birg F., Rosnet O., Carbuccia N., Birnbaum D. The expression of FMS, KIT and FLT3 in hematopoietic malignancies. Leuk Lymphoma. 1994. 13:223–7.
Article
16). Shurin MR., Esche C., Lotze MT. FLT3: receptor and ligand. Biology and potential clinical application. Cytokine Growth Factor Rev. 1998. 9:37–48.
Article
17). McKenna HJ., Stocking KL., Miller RE, et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood. 2000. 95:3489–97.
Article
18). Lisovsky M., Estrov Z., Zhang X, et al. Flt3 ligand stimulates proliferation and inhibits apoptosis of acute myeloid leukemia cells: regulation of Bcl-2 and Bax. Blood. 1996. 88:3987–97.
Article
19). Fenski R., Flesch K., Serve S, et al. Constitutive activation of FLT3 in acute myeloid leukaemia and its consequences for growth of 32D cells. Br J Hae-matol. 2000. 108:322–30.
Article
20). Mizuki M., Fenski R., Halfter H, et al. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood. 2000. 96:3907–14.
Article
21). Kiyoi H., Naoe T., Nakano Y, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood. 1999. 93:3074–80.
22). Ozeki K., Kiyoi H., Hirose Y, et al. Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. Blood. 2004. 103:1901–8.
Article
23). Frohling S., Schlenk RF., Breitruck J, et al. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood. 2002. 100:4372–80.
24). Au WY., Fung A., Chim CS, et al. FLT-3 aberrations in acute promyelocytic leukaemia: clinicopathological associations and prognostic impact. Br J Haematol. 2004. 125:463–9.
Article
25). Whitman SP., Archer KJ., Feng L, et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res. 2001. 61:7233–9.