Abrams CJ., Davies NW., Shelton PA., Stanfield PR. The role of a single aspartate residue in ionic selectivity and block of a murine inward rectifier K+ channel Kir2.1. J Physiol. 493:643–649. 1996.
Alagem N., Dvir M., Reuveny E. Mechanism of Ba2+ block of a mouse inwardly rectifying K+ channel: differential contribution by two discrete residues. J Physiol. 534:381–393. 2001.
Dart C., Leyland ML., Barrett-Jolley R., Shelton PJ., Spencer PJ., Conley EC., Sutcliffe MJ., Stanfield PR. The dependence of Ag+ block of a potassium channel, murine Kir2.1, on a cysteine residue in the selectivity filter. J Physiol. 511:15–24. 1998.
Doring F., Derst C., Wischmeyer E., Karschin C., Schneggenburger R., Daut J., Karschin A. The epithelial inward rectifier channel Kir7.1 displays unusual K+ permeation properties. J Neurosci. 18:8625–8636. 1998.
Doyle DA., Morais CJ., Pfuetzner RA., Kuo A., Gulbis JM., Cohen SL., Chait BT., Mackinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 280:69–77. 1998.
Duprat F., Lesage F., Fink M., Reyes R., Heurateaux C., Lazdunski M. TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J. 17:5464–5471. 1997.
Fakler B., Brandle U., Bond CH., Glowatzki E., Konig C., Adelman JP., Zenner HP., Ruppersberg JP. A structural determinant of differential sensitivity of cloned inward rectifier K+ channels to intracellular spermine. FEBS Lett. 356:199–203. 1994.
Fakler B., Brandle U., Glowatzki E., Weidemann S., Zenner HP., Ruppersberg JP. Strong voltage-dependent inward rectification of inward rectifier K+ channels is caused by intracellular spermine. Cell. 80:149–154. 1995.
Ficker E., Taglialatela M., WIBLE BA., Henley CM., Brown AM. Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science. 266:1068–1072. 1994.
Hagiwara S., Miyazaki S., Moody W., Patlak J. Blocking effects of barium and hydrogen ions on the potassium current during anomalous rectification in the starfish egg. J Physiol. 279:167–185. 1978.
Article
Hagiwara S., Yoshii M. Effects of internal potassium and sodium on the anomalous rectification of the starfish egg as examined by internal perfusion. J Physiol. 292:251–265. 1979.
Article
Harris RE., Larsson HP., Isakoff EY. A permanent ion binding site located between two gates of the Shaker K+ channel. Biophys J. 74:1808–1820. 1998.
Heginbotham L., Lu Z., Abramson T., Mackinnon R. Mutations in the K+ channel signature sequence. Biophys J. 66:1061–1067. 1994.
Hidalgo P., Mackinnon R. Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor. Science. 268:307–310. 1995.
Hurst RS., Toro L., Stefani E. Molecular determinants of external barium block in Shaker potassium channels. FEBS Lett. 388:59–65. 1996.
Jiang Y., Mackinnon R. The barium site in a potassium channel by x-ray crystallography. J Gen Physiol. 115:269–272. 2000.
Article
Krapivinsky G., Medina I., Eng L., Krapivinsky L., Yang Y., Clapham DE. A novel inward rectifier K+ channel with unique pore properties. Neuron. 20:995–1005. 1998.
Kunkel TA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA. 82:488–492. 1985.
Article
Kuo A., Gulbis JM., Antcliff JF., Rahman T., Lowe ED., Zimmer J., Cuthbertson J., Ashcroft FM., Ezaki T., Doyle DA. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science. 300:1922–1926. 2003.
Article
Lancaster MK., Dibb KM., Quinn CC., Leach R., Lee JK., Findlay JB., Boyett MR. Residues and mechanisms for slow activation and Ba2+ block of the cardiac muscarinic K+ channel, Kir3.1/Kir3.4. J Biol Chem. 275:35831–35839. 2000.
Lee YM., Yang DK., Ashmole I., Stanfield PR., So I., Kim KW. Residues lining the pore region of the murine inward rectifier K+ channel (KIR2.1) control Ba2+ blockage. Biophysical J. 80:631A. 2001.
Leech CA., Stanfield PR. Inward rectification in frog skeletal muscle fibres and its dependence on membrane potential and external potassium. J Physiol. 319:295–309. 1981.
Article
Lesage F., Guillemare E., Fink M., Duprat F., Lazdunski M., Romely G., Barhanin J. TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J. 15:1004–1011. 1996.
Lockless SW., Zhou M., Mackinnon R. Structural and thermo-dynamic properties of selective ion binding in a K+ channel. PLoS Biology. 5:1079–1088. 2007.
Lopatin AN., Makhina EN., Nichols CG. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature. 372:366–369. 1994.
Article
Lopatin AN., Makhina EN., Nichols CG. The mechanism of inward rectification of potassium channels: “long-pore plugging” by cytoplasmic polyamines. J Gen Physiol. 106:923–955. 1995.
Article
Lopatin AN., Nichols CG. [K+] Dependence of polyamine-induced rectification in inward rectifier potassium channels (IRK1, Kir2.1). J Gen Physiol. 108:105–113. 1996.
Lu T., Ting AY., Mainland J., Jan LY., Schultz PG., Yang J. Probing ion permeation and gating in a K+ channel with backbone mutations in the selectivity filter. Nature Neurosci. 4:239–246. 2001.
Matsuda H., Saigusa A., Irisawa H. Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+. Nature. 325:156–159. 1987.
Minor DL., Masseling SJ., Jan YN., Jan LY. Transmembrane structure of an inwardly rectifying potassium channel. Cell. 96:879–891. 1999.
Article
Navaratnam DS., Escobar L., Covarrubias M., Oberholtzer JC. Permeation properties and differential expression across the auditory receptor epithelium of an inward rectifier K+ channel cloned from the chick inner ear. J Biol Chem. 270:19238–19245. 1995.
Neyton J., Miller C. Potassium blocks barium permeation through a calcium-activated potassium channel. J Gen Physiol. 92:549–567. 1988a.
Article
Neyton J., Miller C. Discrete Ba2+ block as a probe of ion occupancy and pore structure in the high conductance Ca2+ activated K+ channel. J Gen Physiol. 92:569–586. 1988b.
Nishida M., Cadene M., Chait BT., Mackinnon R. Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. EMBO J. 26:4005–4015. 2007.
Article
Reuveny E., Jan YN., Jan LY. Contributions of a negatively charged residue in the hydrophobic domain of the IRK1 inwardly rectifying K+ channel to K+-selective permeation. Biophys J. 70:754–761. 1996.
Sabirov RZ., Tominaga T., Miwa A., Okada Y., Oiki S. A conserved arginine residue in the pore region of an inward rectifier K channel (IRK1) as an external barrier for cationic blockers. J Gen Physiol. 110:665–677. 1997.
Article
Shieh RC., Chang JC., Arreola J. Interaction of Ba2+ with the pores of the cloned inward rectifier K+ channels Kir2.1 expressed in Xenopus oocytes. Biophys J. 75:2313–2322. 1998.
Shioya T., Matsuda H., Noma A. Fast and slow blockades of the inward-rectifier K+ channel by external divalent cations in guinea-pig cardiac myocytes. Pflügers Arch. 422:427–435. 1993.
So I., Ashmole I., Davies NW., Sutcliffe MJ., Stanfield PR. The K+ channel signature sequence of murine Kir2.1: mutations that affect microscopic gating but not ionic selectivity. J Physiol. 531:37–50. 2001.
So I., Ashmole I., Soh H., Park CS., Spencer PJ., Leyland M., Stanfield PR. Intrinsic gating in inward rectifier potassium channels (Kir2.1) with low polyamine affinity generated by site directed mutagenesis. Kor J Physiol Pharmacol. 7:131–142. 2003a.
So I., Ashmole I., Stanfield PR. The substates with mutants that negatively charged aspartate in position 172 was replaced with positive charge in murine inward rectifier potassium channel (murine Kir2.1). Kor J Physiol Pharmacol. 7:267–273. 2003b.
Standen NB., Stanfield PR. A potential- and time-dependent blockade of inward rectification in frog skeletal muscle fibres by barium and strontium ions. J Physiol. 280:169–191. 1978.
Article
Stanfield PR., Davies NW., Shelton PA., Sutcliffe MJ., Khan IA., Brammar WJ., Conley EC. A single aspartate residue is involved in both intrinsic gating and blockage by Mg2+ of the inward rectifier, IRK1. J Physiol. 478:1–6. 1994.
Stanfield PR., Nakajima S., Nakajima Y. Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev Physiol Biochem Pharmacol. 145:47–179. 2002.
Thompson GA., Passmore GM., Spencer PJ., Davies NW., Stanfield PR. Blockage of inward rectifier potassium channels (murine Kir2.1) by Ba2+ is influenced by an aspartate residue (D172). J Physiol. 511P:146P. 1998.
Thompson GA., Leyland ML., Ashmole I., Sutcliffe MJ., Stanfield PR. Residues beyond the selectivity filter of the K+ channel Kir2.1 regulate permeation and block by external Rb+ and Cs+. J Physiol. 526:231–240. 2000a.
Thompson GA., Leyland ML., Ashmole I., Stanfield PR. Residues in H5 and M2 of murine Kir2.1 regulate Ba2+ block. J Physiol. 526P:10S. 2000b.
Topert C., Doring F., Wischmeyer E., Karschin C., Brockhaus J., Ballanyi K., Derst C., Karschin A. Kir2.4: a novel K+ inward rectifier channel associated with motoneurons of cranial nerve nuclei. J Neurosci. 18:4096–4105. 1998.
Woodhull AM. Ionic blockage of sodium channels in nerve. J Gen Physiol. 61:687–708. 1973.
Article
Yang J., Jan YN., Jan LY. Determination of the subunit stoichiometry of an inwardly rectifying potassium channel. Neuron. 15:1441–1447. 1995.
Article
Zhou H., Chepilko S., Schutt W., Choe H., Palmer LG., Sackin H. Mutations in the pore region of ROMK enhance Ba2+ block. Am J Physiol. 271:C1949–C1956. 1996.