1. Akova M, Daikos GL, Tzouvelekis L, Carmeli Y. Interventional strategies and current clinical experience with carbapenemase-producing Gram-negative bacteria. Clin Microbiol Infect. 2012; 18:439–448.
Article
2. Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev. 2007; 20:440.
Article
3. Schwaber MJ, Carmeli Y. Carbapenem-resistant Enterobacteriaceae: a potential threat. JAMA. 2008; 300:2911–2913.
4. Bratu S, Mooty M, Nichani S, Landman D, Gullans C, Pettinato B, Karumudi U, Tolaney P, Quale J. Emergence of KPC-possessing
Klebsiella pneumoniae in Brooklyn, New York: epidemiology and recommendations for detection. Antimicrob Agents Chemother. 2005; 49:3018–3020.
Article
5. Kanj SS, Kanafani ZA. Current concepts in antimicrobial therapy against resistant gram-negative organisms: extended-spectrum β-lactamase-producing
Enterobacteriaceae, carbapenem-resistant
Enterobacteriaceae, and multidrug-resistant
Pseudomonas aeruginosa. Mayo Clin Proc. 2011; 86:250–259.
Article
6. Peleg AY, Seifert H, Paterson DL.
Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008; 21:538–582.
Article
7. Lemos EV, de la Hoz FP, Einarson TR, McGhan WF, Quevedo E, Castañeda C, Kawai K. Carbapenem resistance and mortality in patients with
Acinetobacter baumannii infection: systematic review and meta-analysis. Clin Microbiol Infect. 2014; 20:416–423.
Article
8. Queenan AM, Pillar CM, Deane J, Sahm DF, Lynch AS, Flamm RK, Peterson J, Davies TA. Multidrug resistance among
Acinetobacter spp. in the USA and activity profile of key agents: results from CAPITAL Surveillance 2010. Diagn Microbiol Infect Dis. 2012; 73:267–270.
Article
9. Garnacho-Montero J, Ortiz-Leyba C, Jiménez-Jiménez FJ, Barrero-Almodóvar AE, García-Garmendia JL, Bernabeu-WittelI M, Gallego-Lara SL, Madrazo-Osuna J. Treatment of multidrug-resistant
Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: a comparison with imipenem-susceptible VAP. Clin Infect Dis. 2003; 36:1111–1118.
Article
10. Oliveira MS, Prado GV, Costa SF, Grinbaum RS, Levin AS. Ampicillin/sulbactam compared with polymyxins for the treatment of infections caused by carbapenem-resistant
Acinetobacter spp. J Antimicrob Chemother. 2008; 61:1369–1375.
Article
11. Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, Silveira FP, Forrest A, Nation RL. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother. 2011; 55:3284–3294.
Article
12. Kuo SC, Lee YT, Yang SP, Chen CP, Chen TL, Hsieh SL, Siu LK, Fung CP. Eradication of multidrug-resistant
Acinetobacter baumannii from the respiratory tract with inhaled colistin methanesulfonate: a matched case-control study. Clin Microbiol Infect. 2012; 18:870–876.
Article
13. Rattanaumpawan P, Lorsutthitham J, Ungprasert P, Angkasekwinai N, Thamlikitkul V. Randomized controlled trial of nebulized colistimethate sodium as adjunctive therapy of ventilator-associated pneumonia caused by Gram-negative bacteria. J Antimicrob Chemother. 2010; 65:2645–2649.
Article
14. Swenson JM, Killgore GE, Tenover FC. Antimicrobial susceptibility testing of
Acinetobacter spp. by NCCLS broth microdilution and disk diffusion methods. J Clin Microbiol. 2004; 42:5102–5108.
Article
15. Reddy T, Chopra T, Marchaim D, Pogue JM, Alangaden G, Salimnia H, Boikov D, Navon-Venezia S, Akins R, Selman P, Dhar S, Kaye KS. Trends in antimicrobial resistance of
Acinetobacter baumannii isolates from a metropolitan Detroit health system. Antimicrob Agents Chemother. 2010; 54:2235–2238.
Article
16. Betrosian AP, Frantzeskaki F, Xanthaki A, Douzinas EE. Efficacy and safety of high-dose ampicillin/sulbactam vs. colistin as monotherapy for the treatment of multidrug resistant
Acinetobacter baumannii ventilator-associated pneumonia. J Infect. 2008; 56:432–436.
Article
17. Muralidharan G, Micalizzi M, Speth J, Raible D, Troy S. Pharmacokinetics of tigecycline after single and multiple doses in healthy subjects. Antimicrob Agents Chemother. 2005; 49:220–229.
Article
18. Kim NH, Hwang JH, Song KH, Choe PG, Kim ES, Park SW, Kim HB, Kim NJ, Park WB, Oh MD. Tigecycline in carbapenem-resistant
Acinetobacter baumannii bacteraemia: susceptibility and clinical outcome. Scand J Infect Dis. 2013; 45:315–319.
Article
19. Lee YT, Tsao SM, Hsueh PR. Clinical outcomes of tigecycline alone or in combination with other antimicrobial agents for the treatment of patients with healthcare-associated multidrug-resistant
Acinetobacter baumannii infections. Eur J Clin Microbiol Infect Dis. 2013; 32:1211–1220.
Article
20. Ramirez J, Dartois N, Gandjini H, Yan JL, Korth-Bradley J, McGovern PC. Randomized phase 2 trial to evaluate the clinical efficacy of two high-dosage tigecycline regimens versus imipenem-cilastatin for treatment of hospital-acquired pneumonia. Antimicrob Agents Chemother. 2013; 57:1756–1762.
Article
21. Denys GA, Callister SM, Dowzicky MJ. Antimicrobial susceptibility among gram-negative isolates collected in the USA between 2005 and 2011 as part of the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.). Ann Clin Microbiol Antimicrob. 2013; 12:24.
Article
22. Griffith ME, Yun HC, Horvath LL, Murray CK. Minocycline therapy for traumatic wound infections caused by the multidrug-resistant
Acinetobacter baumannii-
Acinetobacter calcoaceticus complex. Infect Dis Clin Pract. 2008; 16:16–19.
Article
23. Wood GC, Hanes SD, Boucher BA, Croce MA, Fabian TC. Tetracyclines for treating multidrug-resistant
Acinetobacter baumannii ventilator-associated pneumonia. Intensive Care Med. 2003; 29:2072–2076.
Article
24. Aydemir H, Akduman D, Piskin N, Comert F, Horuz E, Terzi A, Kokturk F, Ornek T, Celebi G. Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant
Acinetobacter baumannii ventilator-associated pneumonia. Epidemiol Infect. 2013; 141:1214–1222.
Article
25. Durante-Mangoni E, Signoriello G, Andini R, Mattei A, De Cristoforo M, Murino P, Bassetti M, Malacarne P, Petrosillo N, Galdieri N, Mocavero P, Corcione A, Viscoli C, Zarrilli R, Gallo C, Utili R. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant
Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin Infect Dis. 2013; 57:349–358.
Article
26. Santimaleeworagun W, Wongpoowarak P, Chayakul P, Pattharachayakul S, Tansakul P, Garey KW. In vitro activity of colistin or sulbactam in combination with fosfomycin or imipenem against clinical isolates of carbapenem-resistant Acinetobacter baumannii producing OXA-23 carbapenemases. Southeast Asian J Trop Med Public Health. 2011; 42:890–900.
27. Sirijatuphat R, Thamlikitkul V. Colistin versus colistin plus fosfomycin for treatment of carbapenem-resistant
Acinetobacter baumannii infections : A preliminary study. Antimicrob Agents Chemother. 2014; 58:5598–5601.
Article
28. Batirel A, Balkan II, Karabay O, Agalar C, Akalin S, Alici O, Alp E, Altay FA, Altin N, Arslan F, Aslan T, Bekiroglu N, Cesur S, Celik AD, Dogan M, Durdu B, Duygu F, Engin A, Engin DO, Gonen I, Guclu E, Guven T, Hatipoglu CA, Hosoglu S, Karahocagil MK, Kilic AU, Ormen B, Ozdemir D, Ozer S, Oztoprak N, Sezak N, Turhan V, Turker N, Yilmaz H. Comparison of colistin-carbapenem, colistin-sulbactam, and colistin plus other antibacterial agents for the treatment of extremely drug-resistant
Acinetobacter baumannii bloodstream infections. Eur J Clin Microbiol Infect Dis. 2014; 33:1311–1322.
Article
29. Shields RK, Clancy CJ, Gillis LM, Kwak EJ, Silveira FP, Massih RC, Eschenauer GA, Potoski BA, Nguyen MH. Epidemiology, clinical characteristics and outcomes of extensively drug-resistant Acinetobacter baumannii infections among solid organ transplant recipients. PLoS One. 2012; 7:e52349.
30. Sutcliffe JA, O'Brien W, Fyfe C, Grossman TH. Antibacterial activity of eravacycline (TP-434), a novel fluorocycline, against hospital and community pathogens. Antimicrob Agents Chemother. 2013; 57:5548–5558.
Article
31. Solomkin JS, Ramesh MK, Cesnauskas G, Novikovs N, Stefanova P, Sutcliffe JA, Walpole SM, Horn PT. Phase 2, randomized, double-blind study of the efficacy and safety of two dose regimens of eravacycline versus ertapenem for adult community-acquired complicated intra-abdominal infections. Antimicrob Agents Chemother. 2014; 58:1847–1854.
Article
32. Morrow BJ, Pillar CM, Deane J, Sahm DF, Lynch AS, Flamm RK, Peterson J, Davies TA. Activities of carbapenem and comparator agents against contemporary US
Pseudomonas aeruginosa isolates from the CAPITAL surveillance program. Diagn Microbiol Infect Dis. 2013; 75:412–416.
Article
33. Linden PK, Kusne S, Coley K, Fontes P, Kramer DJ, Paterson D. Use of parenteral colistin for the treatment of serious infection due to antimicrobial-resistant Pseudomonas aeruginosa. Clin Infect Dis. 2003; 37:e154–e160.
34. Falagas ME, Rafailidis PI, Ioannidou E, Alexiou VG, Matthaiou DK, Karageorgopoulos DE, Kapaskelis A, Nikita D, Michalopoulos A. Colistin therapy for microbiologically documented multidrug-resistant Gram-negative bacterial infections: a retrospective cohort study of 258 patients. Int J Antimicrob Agents. 2010; 35:194–199.
Article
35. Hachem RY, Chemaly RF, Ahmar CA, Jiang Y, Boktour MR, Rjaili GA, Bodey GP, Raad II. Colistin is effective in treatment of infections caused by multidrug-resistant
Pseudomonas aeruginosa in cancer patients. Antimicrob Agents Chemother. 2007; 51:1905–1911.
Article
36. Kwa AL, Loh C, Low JG, Kurup A, Tam VH. Nebulized colistin in the treatment of pneumonia due to multidrug-resistant
Acinetobacter baumannii and
Pseudomonas aeruginosa. Clin Infect Dis. 2005; 41:754–757.
Article
37. Lu Q, Luo R, Bodin L, Yang J, Zahr N, Aubry A, Golmard JL, Rouby JJ. Nebulized Antibiotics Study Group. Efficacy of high-dose nebulized colistin in ventilator-associated pneumonia caused by multidrug-resistant
Pseudomonas aeruginosa and
Acinetobacter baumannii. Anesthesiology. 2012; 117:1335–1347.
Article
38. Neuner EA, Sekeres J, Hall GS, van Duin D. Experience with fosfomycin for treatment of urinary tract infections due to multidrug-resistant organisms. Antimicrob Agents Chemother. 2012; 56:5744–5748.
Article
39. Dinh A, Salomon J, Bru JP, Bernard L. Fosfomycin: efficacy against infections caused by multidrug-resistant bacteria. Scand J Infect Dis. 2012; 44:182–189.
Article
40. Pontikis K, Karaiskos I, Bastani S, Dimopoulos G, Kalogirou M, Katsiari M, Oikonomou A, Poulakou G, Roilides E, Giamarellou H. Outcomes of critically ill intensive care unit patients treated with fosfomycin for infections due to pandrug-resistant and extensively drug-resistant carbapenemase-producing Gram-negative bacteria. Int J Antimicrob Agents. 2014; 43:52–59.
Article
41. Apisarnthanarak A, Mundy LM. Carbapenem-resistant
Pseudomonas aeruginosa pneumonia with intermediate minimum inhibitory concentrations to doripenem: combination therapy with high-dose, 4-h infusion of doripenem plus fosfomycin versus intravenous colistin plus fosfomycin. Int J Antimicrob Agents. 2012; 39:271–272.
Article
42. Takeda S, Nakai T, Wakai Y, Ikeda F, Hatano K.
In vitro and
in vivo activities of a new cephalosporin, FR264205, against
Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2007; 51:826–830.
Article
43. Mushtaq S, Warner M, Livermore DM.
In vitro activity of ceftazidime+NXL104 against
Pseudomonas aeruginosa and other non-fermenters. J Antimicrob Chemother. 2010; 65:2376–2381.
Article
44. Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, Kallen A, Limbago B, Fridkin S. National Healthcare Safety Network (NHSN) Team and Participating NHSN Facilities. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect Control Hosp Epidemiol. 2013; 34:1–14.
Article
45. Bratu S, Tolaney P, Karumudi U, Quale J, Mooty M, Nichani S, Landman D. Carbapenemase-producing
Klebsiella pneumoniae in Brooklyn, NY: molecular epidemiology and
in vitro activity of polymyxin B and other agents. J Antimicrob Chemother. 2005; 56:128–132.
Article
46. Castanheira M, Sader HS, Deshpande LM, Fritsche TR, Jones RN. Antimicrobial activities of tigecycline and other broad-spectrum antimicrobials tested against serine carbapenemase-and metallo-β-lactamase-producing
Enterobacteriaceae: report from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother. 2008; 52:570–573.
Article
47. Satlin MJ, Calfee DP, Chen L, Fauntleroy KA, Wilson SJ, Jenkins SG, Feldman EJ, Roboz GJ, Shore TB, Helfgott DC, Soave R, Kreiswirth BN, Walsh TJ. Emergence of carbapenem-resistant
Enterobacteriaceae as causes of bloodstream infections in patients with hematologic malignancies. Leuk Lymphoma. 2013; 54:799–806.
Article
48. Pena I, Picazo JJ, Rodríguez-Avial C, Rodríguez-Avial I. Carbapenemase-producing
Enterobacteriaceae in a tertiary hospital in Madrid, Spain: high percentage of colistin resistance among VIM-1-producing
Klebsiella pneumoniae ST11 isolates. Int J Antimicrob Agents. 2014; 43:460–464.
Article
49. Poulakou G, Kontopidou FV, Paramythiotou E, Kompoti M, Katsiari M, Mainas E, Nicolaou C, Yphantis D, Antoniadou A, Trikka-Graphakos E, Roussou Z, Clouva P, Maguina N, Kanellakopoulou K, Armaganidis A, Giamarellou H. Tigecycline in the treatment of infections from multi-drug resistant gram-negative pathogens. J Infect. 2009; 58:273–284.
Article
50. Kelesidis T, Karageorgopoulos DE, Kelesidis I, Falagas ME. Tigecycline for the treatment of multidrug-resistant
Enterobacteriaceae: a systematic review of the evidence from microbiological and clinical studies. J Antimicrob Chemother. 2008; 62:895–904.
Article
51. Cobo J, Morosini MI, Pintado V, Tato M, Samaranch N, Baquero F, Cantón R. Use of tigecycline for the treatment of prolonged bacteremia due to a multiresistant VIM-1 and SHV-12 β-lactamase-producing
Klebsiella pneumoniae epidemic clone. Diagn Microbiol Infect Dis. 2008; 60:319–322.
Article
52. Nordmann P, Cuzon G, Naas T. The real threat of
Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis. 2009; 9:228–236.
Article
53. Bogdanovich T, Adams-Haduch JM, Tian GB, Nguyen MH, Kwak EJ, Muto CA, Doi Y. Colistin-resistant,
Klebsiella pneumoniae carbapenemase (KPC)-producing
Klebsiella pneumoniae belonging to the international epidemic clone ST258. Clin Infect Dis. 2011; 53:373–376.
Article
54. Arnold RS, Thom KA, Sharma S, Phillips M, Johnson JK, Morgan DJ. Emergence of Klebsiella pneumoniae carbapenemase-producing bacteria. South Med J. 2011; 104:40–45.
55. Souli M, Kontopidou FV, Papadomichelakis E, Galani I, Armaganidis A, Giamarellou H. Clinical experience of serious infections caused by
Enterobacteriaceae producing VIM-1 metallo-β-lactamase in a Greek University Hospital. Clin Infect Dis. 2008; 46:847–854.
Article
56. Souli M, Galani I, Antoniadou A, Papadomichelakis E, Poulakou G, Panagea T, Vourli S, Zerva L, Armaganidis A, Kanellakopoulou K, Giamarellou H. An outbreak of infection due to β-lactamase
Klebsiella pneumoniae carbapenemase 2-producing
K. pneumoniae in a Greek university hospital: molecular characterization, epidemiology, and outcomes. Clin Infect Dis. 2010; 50:364–373.
Article
57. Daikos GL, Petrikkos P, Psichogiou M, Kosmidis C, Vryonis E, Skoutelis A, Georgousi K, Tzouvelekis LS, Tassios PT, Bamia C, Petrikkos G. Prospective observational study of the impact of VIM-1 metallo-β-lactamase on the outcome of patients with
Klebsiella pneumoniae bloodstream infections. Antimicrob Agents Chemother. 2009; 53:1868–1873.
Article
58. Kontopidou F, Giamarellou H, Katerelos P, Maragos A, Kioumis I, Trikka-Graphakos E, Valakis C, Maltezou HC. Group for the Study of KPC-producing Klebsiella pneumoniae infections in intensive care units. Infections caused by carbapenem-resistant Klebsiella pneumoniae among patients in intensive care units in Greece: a multi-centre study on clinical outcome and therapeutic options. Clin Microbiol Infect. 2014; 20:O117–O123.
59. Hirsch EB, Tam VH. Detection and treatment options for
Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J Antimicrob Chemother. 2010; 65:1119–1125.
Article
60. Daikos GL, Markogiannakis A. Carbapenemase-producing
Klebsiella pneumoniae: (when) might we still consider treating with carbapenems? Clin Microbiol Infect. 2011; 17:1135–1141.
Article
61. Clancy CJ, Chen L, Shields RK, Zhao Y, Cheng S, Chavda KD, Hao B, Hong JH, Doi Y, Kwak EJ, Silveira FP, Abdel-Massih R, Bogdanovich T, Humar A, Perlin DS, Kreiswirth BN, Hong Nguyen M. Epidemiology and molecular characterization of bacteremia due to carbapenem-resistant
Klebsiella pneumoniae in transplant recipients. Am J Transplant. 2013; 13:2619–2633.
Article
62. Endimiani A, Patel G, Hujer KM, Swaminathan M, Perez F, Rice LB, Jacobs MR, Bonomo RA.
In vitro activity of fosfomycin against
blaKPC-containing
Klebsiella pneumoniae isolates, including those nonsusceptible to tigecycline and/or colistin. Antimicrob Agents Chemother. 2010; 54:526–529.
Article
63. Michalopoulos A, Virtzili S, Rafailidis P, Chalevelakis G, Damala M, Falagas ME. Intravenous fosfomycin for the treatment of nosocomial infections caused by carbapenem-resistant
Klebsiella pneumoniae in critically ill patients: a prospective evaluation. Clin Microbiol Infect. 2010; 16:184–186.
Article
64. Karageorgopoulos DE, Miriagou V, Tzouvelekis LS, Spyridopoulou K, Daikos GL. Emergence of resistance to fosfomycin used as adjunct therapy in KPC
Klebsiella pneumoniae bacteraemia: report of three cases. J Antimicrob Chemother. 2012; 67:2777–2779.
Article
65. Livermore DM, Tulkens PM. Temocillin revived. J Antimicrob Chemother. 2009; 63:243–245.
Article
66. Adams-Haduch JM, Potoski BA, Sidjabat HE, Paterson DL, Doi Y. Activity of temocillin against KPC-producing
Klebsiella pneumoniae and
Escherichia coli. Antimicrob Agents Chemother. 2009; 53:2700–2701.
Article
67. Bulik CC, Nicolau DP.
In vivo efficacy of simulated human dosing regimens of prolonged-infusion doripenem against carbapenemase-producing
Klebsiella pneumoniae. Antimicrob Agents Chemother. 2010; 54:4112–4115.
Article
68. Ho VP, Jenkins SG, Afaneh CI, Turbendian HK, Nicolau DP, Barie PS. Use of meropenem by continuous infusion to treat a patient with a
blaKPC-2-positive
Klebsiella pneumoniae blood stream infection. Surg Infect (Larchmt). 2011; 12:325–327.
Article
69. Tzouvelekis LS, Markogiannakis A, Piperaki E, Souli M, Daikos GL. Treating infections caused by carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect. 2014; [Epub ahead of print].
70. Qureshi ZA, Paterson DL, Potoski BA, Kilayko MC, Sandovsky G, Sordillo E, Polsky B, Adams-Haduch JM, Doi Y. Treatment outcome of bacteremia due to KPC-producing
Klebsiella pneumoniae: superiority of combination antimicrobial regimens. Antimicrob Agents Chemother. 2012; 56:2108–2113.
Article
71. Zarkotou O, Pournaras S, Tselioti P, Dragoumanos V, Pitiriga V, Ranellou K, Prekates A, Themeli-Digalaki K, Tsakris A. Predictors of mortality in patients with bloodstream infections caused by KPC-producing
Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin Microbiol Infect. 2011; 17:1798–1803.
Article
72. Tumbarello M, Viale P, Viscoli C, Trecarichi EM, Tumietto F, Marchese A, Spanu T, Ambretti S, Ginocchio F, Cristini F, Losito AR, Tedeschi S, Cauda R, Bassetti M. Predictors of mortality in bloodstream infections caused by
Klebsiella pneumoniae carbapenemase-producing
K. pneumoniae: importance of combination therapy. Clin Infect Dis. 2012; 55:943–950.
Article
73. Daikos GL, Tsaousi S, Tzouvelekis LS, Anyfantis I, Psichogiou M, Argyropoulou A, Stefanou I, Sypsa V, Miriagou V, Nepka M, Georgiadou S, Markogiannakis A, Goukos D, Skoutelis A. Carbapenemase-producing
Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob Agents Chemother. 2014; 58:2322–2328.
Article
74. Lagacé-Wiens P, Walkty A, Karlowsky JA. Ceftazidime-avibactam: an evidence-based review of its pharmacology and potential use in the treatment of Gram-negative bacterial infections. Core Evid. 2014; 9:13–25.
75. Ehmann DE, Jahic H, Ross PL, Gu RF, Hu J, Durand-Réville TF, Lahiri S, Thresher J, Livchak S, Gao N, Palmer T, Walkup GK, Fisher SL. Kinetics of avibactam inhibition against Class A, C, and D β-lactamases. J Biol Chem. 2013; 288:27960–27971.
Article
76. Mushtaq S, Warner M, Williams G, Critchley I, Livermore DM. Activity of chequerboard combinations of ceftaroline and NXL104 versus β-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother. 2010; 65:1428–1432.
Article
77. Stachyra T, Levasseur P, Péchereau MC, Girard AM, Claudon M, Miossec C, Black MT.
In vitro activity of the β-lactamase inhibitor NXL104 against KPC-2 carbapenemase and Enterobacteriaceae expressing KPC carbapenemases. J Antimicrob Chemother. 2009; 64:326–329.
Article
78. Endimiani A, Hujer KM, Hujer AM, Armstrong ES, Choudhary Y, Aggen JB, Bonomo RA. ACHN-490, a neoglycoside with potent
in vitro activity against multidrug-resistant
Klebsiella pneumoniae isolates. Antimicrob Agents Chemother. 2009; 53:4504–4507.
Article
79. Nordmann P, Poirel L. Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect. 2002; 8:321–331.
Article
80. Kim YA, Qureshi ZA, Adams-Haduch JM, Park YS, Shutt KA, Doi Y. Features of infections due to
Klebsiella pneumoniae carbapenemase-producing
Escherichia coli: emergence of sequence type 131. Clin Infect Dis. 2012; 55:224–231.
Article
81. Landman D, Urban C, Bäcker M, Kelly P, Shah N, Babu E, Bratu S, Quale J. Susceptibility profiles, molecular epidemiology, and detection of KPC-producing
Escherichia coli isolates from the New York City vicinity. J Clin Microbiol. 2010; 48:4604–4607.
Article
82. O'Hara JA, Hu F, Ahn C, Nelson J, Rivera JI, Pasculle AW, Doi Y. Molecular epidemiology of KPC-producing Escherichia coli: Occurrence of ST131-fimH30 subclone harboring pKpQIL-like IncFIIk plasmid. Antimicrob Agents Chemother. 2014; 58:4234–4237.
83. Zhanel GG, Denisuik A, Vashisht S, Yachison C, Adam HJ, Hoban DJ. Pharmacodynamic activity of ertapenem versus genotypically characterized extended-spectrum β-lactamase (ESBL)-, KPC- or NDM-producing
Escherichia coli with reduced susceptibility or resistance to ertapenem using an
in vitro model. J Antimicrob Chemother. 2014; 69:2448–2452.
Article
84. Kaase M, Szabados F, Anders A, Gatermann SG. Fosfomycin susceptibility in carbapenem-resistant
Enterobacteriaceae from Germany. J Clin Microbiol. 2014; 52:1893–1897.
Article
85. Novak A, Goic-Barisic I, Tambic Andrasevic A, Butic I, Radic M, Jelic M, Rubic Z, Tonkic M. Monoclonal outbreak of VIM-1-carbapenemase-producing Enterobacter cloacae in intensive care unit, University Hospital Centre Split, Croatia. Microb Drug Resist. 2014; [Epub ahead of print].
86. Lee Y, Choi H, Yum JH, Kang G, Bae IK, Jeong SH, Lee K. Molecular mechanisms of carbapenem resistance in Enterobacter cloacae clinical isolates from Korea and clinical outcome. Ann Clin Lab Sci. 2012; 42:281–286.
87. Ahn C, Syed A, Hu F, O'Hara JA, Rivera JI, Doi Y. Microbiological features of KPC-producing
Enterobacter isolates identified in a U.S. hospital system. Diagn Microbiol Infect Dis. 2014; 80:154–158.
Article
88. Nicodemo AC, Paez JI. Antimicrobial therapy for
Stenotrophomonas maltophilia infections. Eur J Clin Microbiol Infect Dis. 2007; 26:229–237.
Article
89. Lai CH, Chi CY, Chen HP, Chen TL, Lai CJ, Fung CP, Yu KW, Wong WW, Liu CY. Clinical characteristics and prognostic factors of patients with Stenotrophomonas maltophilia bacteremia. J Microbiol Immunol Infect. 2004; 37:350–358.
90. Senol E, DesJardin J, Stark PC, Barefoot L, Snydman DR. Attributable mortality of
Stenotrophomonas maltophilia bacteremia. Clin Infect Dis. 2002; 34:1653–1656.
Article
91. Nseir S, Di Pompeo C, Brisson H, Dewavrin F, Tissier S, Diarra M, Boulo M, Durocher A. Intensive care unit-acquired Stenotrophomonas maltophilia: incidence, risk factors, and outcome. Crit Care. 2006; 10:R143.
92. Brooke JS.
Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev. 2012; 25:2–41.
Article
93. Wang YL, Scipione MR, Dubrovskaya Y, Papadopoulos J. Monotherapy with fluoroquinolone or trimethoprim-sulfamethoxazole for treatment of
Stenotrophomonas maltophilia infections. Antimicrob Agents Chemother. 2014; 58:176–182.
Article
94. Cho SY, Kang CI, Kim J, Ha YE, Chung DR, Lee NY, Peck KR, Song JH. Can levofloxacin be a useful alternative to trimethoprim-sulfamethoxazole for treating
Stenotrophomonas maltophilia bacteremia? Antimicrob Agents Chemother. 2014; 58:581–583.
Article
95. Lakatos B, Jakopp B, Widmer A, Frei R, Pargger H, Elzi L, Battegay M. Evaluation of treatment outcomes for
Stenotrophomonas maltophilia bacteraemia. Infection. 2014; 42:553–558.
Article
96. Tekçe YT, Erbay A, Cabadak H, Sen S. Tigecycline as a therapeutic option in
Stenotrophomonas maltophilia infections. J Chemother. 2012; 24:150–154.
Article