1.Sung SJ., Baik HS., Moon YS., Yu HS., Cho YS. A comparative evaluation of different compensating curves in the lingual and labial techniques using 3D FEM. Am J Orthod Dentofacial Orthop. 2003. 123:441–50.
Article
2.Vásquez M., Calao E., Becerra F., Ossa J., Enríquez C., Fresneda E. Initial stress differences between sliding and sectional mechanics with an endosseous implant as anchorage: a 3-dimensional finite element analysis. Angle Orthod. 2001. 71:247–56.
3.Sia S., Shibazaki T., Koga Y., Yoshida N. Experimental determination of optimal force system required for control of anterior tooth movement in sliding mechanics. Am J Orthod Dentofacial Orthop. 2009. 135:36–41.
Article
4.Chung AJ., Kim US., Lee SH., Kang SS., Choi HI., Jo JH, et al. The pattern of movement and stress distribution during retraction of maxillary incisors using a 3-D finite element method. Korean J Orthod. 2007. 37:98–113.
5.Jang HJ., Roh WJ., Joo BH., Park KH., Kim SJ., Park YG. Locating the center of resistance of maxillary anterior teeth retracted by Double J Retractor with palatal miniscrews. Angle Orthod. 2010. 80:1023–8.
Article
6.Kucher G., Weiland FJ., Bantleon HP. Modified lingual lever arm technique. J Clin Orthod. 1993. 27:18–22.
7.Park YC., Choy K., Lee JS., Kim TK. Lever-arm mechanics in lingual orthodontics. J Clin Orthod. 2000. 34:601–5.
8.Nägerl H., Kubein-Meesenburg D. A FEM (Finite-Element-Measurement) study for the biomechanical comparison of labial and palatal force application on the upper incisors. Fortschr Kieferorthop. 1993. 54:229–30.
9.Vanden Bulcke MM., Burstone CJ., Sachdeva RC., Dermaut LR. Location of the centers of resistance for anterior teeth during retraction using the laser reflection technique. Am J Orthod Dentofacial Orthop. 1987. 91:375–84.
Article
10.Sia S., Koga Y., Yoshida N. Determining the center of resistance of maxillary anterior teeth subjected to retraction forces in sliding mechanics. An in vivo study. Angle Orthod. 2007. 77:999–1003.
11.Jeong GM., Sung SJ., Lee KJ., Chun YS., Mo SS. Finite-element investigation of the center of resistance of the maxillary dentition. Korean J Orthod. 2009. 39:83–94.
Article
12.Sung SJ., Kim IT., Kook YA., Chun YS., Kim SH., Mo SS. Finite-element analysis of the shift in center of resistance of the maxillary dentition in relation to alveolar bone loss. Korean J Orthod. 2009. 39:278–88.
Article
13.Creekmore TD., Eklund MK. The possibility of skeletal anchorage. J Clin Orthod. 1983. 17:266–9.
14.Costa A., Raffainl M., Melsen B. Miniscrews as orthodontic anchorage: a preliminary report. Int J Adult Orthodon Orthog-nath Surg. 1998. 13:201–9.
15.Linkow LI. The endosseous blade implant and its use in orthodontics. Int J Orthod. 1969. 7:149–54.
16.Kanomi R. Mini-implant for orthodontic anchorage. J Clin Orthod. 1997. 31:763–7.
17.Sugawara J. Dr. Junji Sugawara on the skeletal anchorage system. Interview by Dr. Larry W. White. J Clin Orthod. 1999. 33:689–96.
18.Chung KR., Kook YA., Kim SH., Mo SS., Jung JA. Class II malocclusion treated by combining a lingual retractor and a palatal plate. Am J Orthod Dentofacial Orthop. 2008. 133:112–23.
Article
19.Hong RK., Heo JM., Ha YK. Lever-arm and mini-implant system for anterior torque control during retraction in lingual orthodontic treatment. Angle Orthod. 2005. 75:129–41.
20.Burstone CJ. Rationale of the segmented arch. Am J Orthod. 1962. 48:805–22.
Article
21.Burstone CJ. The segmented arch approach to space closure. Am J Orthod. 1982. 82:361–78.
Article
22.Row J., Ryu YK. Three dimentional force analysis of force system in continuous archwire by finite element method. Koren J Orthod. 1996. 26:17–32.
23.Melsen B. Tissue reaction to orthodontic tooth movement--a new paradigm. Eur J Orthod. 2001. 23:671–81.
Article
24.Tanne K., Nagataki T., Inoue Y., Sakuda M., Burstone CJ. Patterns of initial tooth displacements associated with various root lengths and alveolar bone heights. Am J Orthod Dentofacial Orthop. 1991. 100:66–71.
Article
25.Rudolph DJ., Willes PMG., Sameshima GT. A finite element model of apical force distribution from orthodontic tooth movement. Angle Orthod. 2001. 71:127–31.
26.Tahk SG. A study on craniofacial growth analysis of Korean children by the finite element method. Korean J Orthod. 1988. 18:343–66.
27.Ricketts RM., Bench RW., Gugino CF., Hilgers JJ., Schulhof RJ. Bioprogressive therapy. Denver: Rocky Mountain Orthodontics;1979.
28.Lim SJ., Kwak BM., Lee JS. Introduction to finite element analysis. Seoul: Dongmyung Publishing;2003.
29.Kim KH. A finite element analysis of effectiveness of lever arm in lingual sliding mechanics (thesis). Seoul: Yonsei University. 2009.
30.Andrews LF. The six keys to normal occlusion. Am J Orthod. 1972. 62:296–309.
Article
31.Kronfeld R. Histologic study of the influence of function on the human periodontal membrane. J Am Dent Assoc. 1931. 18:1242–74.
32.Coolidge E. The thickness of the human periodontal membrane. J Am Dent Assoc. 1937. 24:1260–5.
Article
33.Kim SH., Park SB., Yang HC. Three-dimensional finite element analysis of the bracket positioning plane in lingual orthodontics. Korean J Orthod. 2006. 36:30–44.
34.Tanne K., Sakuda M., Burstone CJ. Three-dimensional finite element analysis for stress in the periodontal tissue by orthodontic forces. Am J Orthod Dentofacial Orthop. 1987. 92:499–505.
Article
35.McLaughlin RP., Bennett JC. Anchorage control during leveling and aligning with a preadjusted appliance system. J Clin Orthod. 1991. 25:687–96.
36.Mo SS., Kim SH., Sung SJ., Chung KR., Chun YS., Kook YA, et al. Factors controlling anterior torque with C-implants depend on en-masse retraction without posterior appliances: bio-creative therapy type II technique. Am J Orthod Dentofacial Orthop. 2011. 139:e183–91.
Article
37.Jeong HS., Sung SJ., Moon YS., Cho YS., Lim SM. Factors influencing the axes of anterior teeth during SWA en masse sliding retraction with orthodontic mini-implant anchorage: a finite element study. Korean J Orthod. 2006. 36:339–48.
38.Upadhyay M., Yadav S., Nagaraj K., Patil S. Treatment effects of mini-implants for en-masse retraction of anterior teeth in bialveolar dental protrusion patients: a randomized controlled trial. Am J Orthod Dentofacial Orthop. 2008. 134:18–29. .e1.
Article
39.Liang W., Rong Q., Lin J., Xu B. Torque control of the maxillary incisors in lingual and labial orthodontics: a 3-dimensional finite element analysis. Am J Orthod Dentofacial Orthop. 2009. 135:316–22.
Article
40.Lee HK., Chung KR. The vertical location of the center of resistance for maxillary six anterior teeth during retraction using three dimensional finite element analysis. Korean J Orthod. 2001. 31:425–38.
41.Alexander CM., Alexander RG., Gorman JC., Hilgers JJ., Kurz C., Scholz RP, et al. Lingual orthodontics: a status report. Part 5. Lingual mechanotherapy. J Clin Orthod. 1983. 17:99–115.
42.Sung SJ., Jang GW., Chun YS., Moon YS. Effective en-masse retraction design with orthodontic mini-implant anchorage: a finite element analysis. Am J Orthod Dentofacial Orthop. 2010. 137:648–57.
Article
43.Tominaga JY., Tanaka M., Koga Y., Gonzales C., Kobayashi M., Yoshida N. Optimal loading conditions for controlled movement of anterior teeth in sliding mechanics. Angle Orthod. 2009. 79:1102–7.
Article
44.Yoon HJ., Lim YK., Lee DY., Jo YS. Three-dimensional finite element analysis on the effect of maxillary incisor torque. Korean J Orthod. 2005. 35:137–47.
45.Kim CH., Sung JH., Kyung HM. Three-dimensional finite element analysis of initial tooth displacement according to force application point during maxillary six anterior teeth retraction using skeletal anchorage. Korean J Orthod. 2003. 33:339–50.