Diabetes Metab J.  2012 Dec;36(6):415-421. 10.4093/dmj.2012.36.6.415.

Relation of Absolute or Relative Adiposity to Insulin Resistance, Retinol Binding Protein-4, Leptin, and Adiponectin in Type 2 Diabetes

Affiliations
  • 1Department of Internal Medicine, Eulji General Hospital, Eulji University School of Medicine, Seoul, Korea. minyungwa@gmail.com
  • 2Diabetes Center, Eulji General Hospital, Eulji University School of Medicine, Seoul, Korea.

Abstract

BACKGROUND
Central fat mass (CFM) correlates with insulin resistance and increases the risk of type 2 diabetes and cardiovascular complications; however, peripheral fat mass (PFM) is associated with insulin sensitivity. The aim of this study was to investigate the relation of absolute and relative regional adiposity to insulin resistance index and adipokines in type 2 diabetes.
METHODS
Total of 83 overweighted-Korean women with type 2 diabetes were enrolled, and rate constants for plasma glucose disappearance (KITT) and serum adipokines, such as retinol binding protein-4 (RBP4), leptin, and adiponectin, were measured. Using dual X-ray absorptiometry, trunk fat mass (in kilograms) was defined as CFM, sum of fat mass on the lower extremities (in kilograms) as PFM, and sum of CFM and PFM as total fat mass (TFM). PFM/TFM ratio, CFM/TFM ratio, and PFM/CFM ratio were defined as relative adiposity.
RESULTS
Median age was 55.9 years, mean body mass index 27.2 kg/m2, and mean HbA1c level 7.12+/-0.84%. KITT was positively associated with PMF/TFM ratio, PMF/CFM ratio, and negatively with CFM/TFM ratio, but was not associated with TFM, PFM, or CFM. RBP4 levels also had a significant relationship with PMF/TFM ratio and PMF/CFM ratio. Adiponectin, leptin, and apolipoprotein A levels were related to absolute adiposity, while only adiponectin to relative adiposity. In correlation analysis, KITT in type 2 diabetes was positively related with HbA1c, fasting glucose, RBP4, and free fatty acid.
CONCLUSION
These results suggest that increased relative amount of peripheral fat mass may aggravate insulin resistance in type 2 diabetes.

Keyword

Adiponectin; Adiposity; Insulin resistance; Leptin; Retinol binding protein-4

MeSH Terms

Absorptiometry, Photon
Adipokines
Adiponectin
Adiposity
Apolipoproteins
Body Mass Index
Fasting
Female
Glucose
Humans
Insulin
Insulin Resistance
Leptin
Lower Extremity
Plasma
Vitamin A
Adipokines
Adiponectin
Apolipoproteins
Glucose
Insulin
Leptin
Vitamin A

Figure

  • Fig. 1 The relation of insulin resistance to relative adiposity and adiponectin. KITT, rate constant for plasma glucose disappearance.


Cited by  1 articles

Visceral Fat Mass Has Stronger Associations with Diabetes and Prediabetes than Other Anthropometric Obesity Indicators among Korean Adults
Suk Hwa Jung, Kyoung Hwa Ha, Dae Jung Kim
Yonsei Med J. 2016;57(3):674-680.    doi: 10.3349/ymj.2016.57.3.674.


Reference

1. Oda N, Imamura S, Fujita T, Uchida Y, Inagaki K, Kakizawa H, Hayakawa N, Suzuki A, Takeda J, Horikawa Y, Itoh M. The ratio of leptin to adiponectin can be used as an index of insulin resistance. Metabolism. 2008. 57:268–273.
2. Rush EC, Freitas I, Plank LD. Body size, body composition and fat distribution: comparative analysis of European, Maori, Pacific Island and Asian Indian adults. Br J Nutr. 2009. 102:632–641.
3. Ford ES, Williamson DF, Liu S. Weight change and diabetes incidence: findings from a national cohort of US adults. Am J Epidemiol. 1997. 146:214–222.
4. Colditz GA, Willett WC, Stampfer MJ, Manson JE, Hennekens CH, Arky RA, Speizer FE. Weight as a risk factor for clinical diabetes in women. Am J Epidemiol. 1990. 132:501–513.
5. Resnick HE, Howard BV. Diabetes and cardiovascular disease. Annu Rev Med. 2002. 53:245–267.
6. Marceau P, Biron S, Hould FS, Marceau S, Simard S, Thung SN, Kral JG. Liver pathology and the metabolic syndrome X in severe obesity. J Clin Endocrinol Metab. 1999. 84:1513–1517.
7. Boutcher SH, Dunn SL, Gail Trapp E, Freund J. Regional adiposity distribution and insulin resistance in young Chinese and European Australian women. Scand J Clin Lab Invest. 2011. 71:653–657.
8. Seidell JC, Perusse L, Despres JP, Bouchard C. Waist and hip circumferences have independent and opposite effects on cardiovascular disease risk factors: the Quebec Family Study. Am J Clin Nutr. 2001. 74:315–321.
9. Snijder MB, Dekker JM, Visser M, Bouter LM, Stehouwer CD, Yudkin JS, Heine RJ, Nijpels G, Seidell JC. Trunk fat and leg fat have independent and opposite associations with fasting and postload glucose levels: the Hoorn study. Diabetes Care. 2004. 27:372–377.
10. Kelley DE, McKolanis TM, Hegazi RA, Kuller LH, Kalhan SC. Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am J Physiol Endocrinol Metab. 2003. 285:E906–E916.
11. Kotronen A, Juurinen L, Hakkarainen A, Westerbacka J, Corner A, Bergholm R, Yki-Jarvinen H. Liver fat is increased in type 2 diabetic patients and underestimated by serum alanine aminotransferase compared with equally obese nondiabetic subjects. Diabetes Care. 2008. 31:165–169.
12. Gallagher D, Kelley DE, Yim JE, Spence N, Albu J, Boxt L, Pi-Sunyer FX, Heshka S. MRI Ancillary Study Group of the Look AHEAD Research Group. Adipose tissue distribution is different in type 2 diabetes. Am J Clin Nutr. 2009. 89:807–814.
13. Marques-Vidal P, Bochud M, Paccaud F, Mooser V, Waeber G, Vollenweider P. Distribution of plasma levels of adiponectin and leptin in an adult Caucasian population. Clin Endocrinol (Oxf). 2010. 72:38–46.
14. Jia W, Wu H, Bao Y, Wang C, Lu J, Zhu J, Xiang K. Association of serum retinol-binding protein 4 and visceral adiposity in Chinese subjects with and without type 2 diabetes. J Clin Endocrinol Metab. 2007. 92:3224–3229.
15. Yu Y, Venners SA, Wang B, Brickman WJ, Zimmerman D, Li Z, Wang L, Liu X, Tang G, Xing H, Xu X, Wang X. Association of central adiposity with prediabetes and decreased insulin sensitivity in rural Chinese normal-weight and overweight women. Metabolism. 2010. 59:1047–1053.
16. Yoon KH, Lee JH, Kim JW, Cho JH, Choi YH, Ko SH, Zimmet P, Son HY. Epidemic obesity and type 2 diabetes in Asia. Lancet. 2006. 368:1681–1688.
17. Aasen G, Fagertun H, Halse J. Regional fat mass by DXA: high leg fat mass attenuates the relative risk of insulin resistance and dyslipidaemia in obese but not in overweight postmenopausal women. Scand J Clin Lab Invest. 2008. 68:204–211.
18. Hajer GR, van Haeften TW, Visseren FL. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J. 2008. 29:2959–2971.
19. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001. 7:941–946.
20. Cnop M, Havel PJ, Utzschneider KM, Carr DB, Sinha MK, Boyko EJ, Retzlaff BM, Knopp RH, Brunzell JD, Kahn SE. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia. 2003. 46:459–469.
21. Wu Y, Li H, Loos RJ, Qi Q, Hu FB, Liu Y, Lin X. RBP4 variants are significantly associated with plasma RBP4 levels and hypertriglyceridemia risk in Chinese Hans. J Lipid Res. 2009. 50:1479–1486.
22. Shaker O, El-Shehaby A, Zakaria A, Mostafa N, Talaat S, Katsiki N, Mikhailidis DP. Plasma visfatin and retinol binding protein-4 levels in patients with type 2 diabetes mellitus and their relationship to adiposity and fatty liver. Clin Biochem. 2011. 44:1457–1463.
23. Graham TE, Yang Q, Bluher M, Hammarstedt A, Ciaraldi TP, Henry RR, Wason CJ, Oberbach A, Jansson PA, Smith U, Kahn BB. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med. 2006. 354:2552–2563.
24. Wu H, Qi Q, Yu Z, Sun Q, Wang J, Franco OH, Sun L, Li H, Liu Y, Hu FB, Lin X. Independent and opposite associations of trunk and leg fat depots with adipokines, inflammatory markers, and metabolic syndrome in middle-aged and older Chinese men and women. J Clin Endocrinol Metab. 2010. 95:4389–4398.
25. Kang SM, Yoon JW, Ahn HY, Kim SY, Lee KH, Shin H, Choi SH, Park KS, Jang HC, Lim S. Android fat depot is more closely associated with metabolic syndrome than abdominal visceral fat in elderly people. PLoS One. 2011. 6:e27694.
Full Text Links
  • DMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr