Ann Clin Microbiol.  2013 Mar;16(1):45-51. 10.5145/ACM.2013.16.1.45.

Trends in Isolation and Antimicrobial Susceptibility of Enteropathogenic Bacteria in 2001-2010 at a Korean Tertiary Care Hospital

  • 1Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.
  • 2Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea.


Trends in the isolation of enteropathogenic bacteria may differ depending on environmental sanitation. The aims of this study were to determine trends in the isolation and antimicrobial resistance patterns of enteropathogenic bacteria over the last 10 years.
We analyzed stool cultures of Salmonella spp., Shigella spp., Plesiomonas shigelloides, Yersinia spp., Vibrio spp., and Campylobacter spp. collected at Severance Hospital between 2001 and 2010. Antimicrobial susceptibility testing was performed using the disk diffusion method for nontyphoidal Salmonella (NTS) and Campylobacter.
The number of specimens for stool culture significantly increased from 13,412 during 1969-1978 to 60,714 over the past 10 years, whereas the ratio of positive specimens significantly decreased from 12.9% (1,732) to 1.1% (648). The proportion of Salmonella Typhi decreased from 97.2% in 1969-1978 to 0.8% in 2001-2010, whereas the proportion of NTS increased from 2.8% to 99.2%. The proportion of Shigella among all enteric pathogens was over 50% from 1969 to 1983, while only seven strains were isolated from 2001 to 2010, with the exception of one outbreak. Campylobacter is the second most prevalent organism. The rates of susceptibility to ampicillin and cotrimoxazole were 61% and 92%, respectively, for NTS isolated from 2006 to 2010. The ciprofloxacin susceptibility rate was 79.5% for Campylobacter between 2006 and 2010.
The number of isolates of Salmonella Typhi and Shigella significantly decreased, while the proportion of NTS and Campylobacter increased. Continuous monitoring of ciprofloxacin-resistant Campylobacter isolates is necessary.


Campylobacter; Enteropathogenic bacteria; Salmonella

MeSH Terms

Salmonella typhi
Tertiary Healthcare
Trimethoprim, Sulfamethoxazole Drug Combination
Trimethoprim, Sulfamethoxazole Drug Combination

Cited by  7 articles

Guideline for the Antibiotic Use in Acute Gastroenteritis
Youn Jeong Kim, Ki-Ho Park, Dong-Ah Park, Joonhong Park, Byoung Wook Bang, Seung Soon Lee, Eun Jung Lee, Hyo-Jin Lee, Sung Kwan Hong, Yang Ree Kim
Infect Chemother. 2019;51(2):217-243.    doi: 10.3947/ic.2019.51.2.217.

Prescription of Antibiotics for Adults with Acute Infectious Diarrhea in Korea: A Population-based Study
Hyo-Jin Lee, Ki-Ho Park, Dong-Ah Park, Joonhong Park, Byoung Wook Bang, Seung Soon Lee, Eun Jung Lee, Youn Jeong Kim, Sung Kwan Hong, Yang Ree Kim
Infect Chemother. 2019;51(3):295-304.    doi: 10.3947/ic.2019.51.3.295.

Infection of Extended-Spectrum β-Lactamase Producing Shigella flexneri in Children Attending a Childcare Center in Korea
Eun Woo Nam, Kun Song Lee, Junyoung Kim, Cheon Kwon Yoo
Pediatr Infect Vaccine. 2016;23(3):223-228.    doi: 10.14776/piv.2016.23.3.223.

Etiology and Clinical Features of Acute Bacterial Gastroenteritis in Children Mananged at a Secondary Hospital
Sung Yoon Kim, Hyun-Jung Kim, Eun Hye Shin, Byung Wook Eun, Young Min Ahn, Mi Ok Song
Pediatr Infect Vaccine. 2017;24(2):95-101.    doi: 10.14776/piv.2017.24.2.95.

Campylobacter jejuni Bacteremia in a Liver Cirrhosis Patient and Review of Literature: A Case Study
Jin Gu Yoon, Saem Na Lee, Hak Jun Hyun, Min Joo Choi, Ji Ho Jeon, Eunju Jung, Seonghui Kang, Jeeyong Kim, Ji Yun Noh, Won Suk Choi, Joon Young Song, Hee Jin Cheong, Woo Joo Kim
Infect Chemother. 2017;49(3):230-235.    doi: 10.3947/ic.2017.49.3.230.

Prevalence of Bacteria in the Nationwide Survey of Stool Culture Performed in 2015, Korea
Won-Hee Choi, Jung-Hyun Byun, Sunjoo Kim
Ann Clin Microbiol. 2016;19(4):105-109.    doi: 10.5145/ACM.2021.19.4.105.

Campylobacter fetus Peritonitis in a Patient with Continuous Ambulatory Peritoneal Dialysis: A First Case Report in Korea
Kyuhwa Hur, Eunyoung Lee, Jongmyeong Kang, Yangsoon Lee
Ann Clin Microbiol. 2018;21(1):20-22.    doi: 10.5145/ACM.2018.21.1.20.


1.World Health Organization Media Center. Diarrhoeal disease.[Online. (last visited on 14 August 2012).
2.Shin HB., Jeong SH., Kim M., Kim WH., Lee K., Chong Y. Isolation trend of enteropathogenic bacteria in 1969-1998. Korean J Clin Microbiol. 2001. 4:87–95.
3.Rohde H., Qin J., Cui Y., Li D., Loman NJ., Hentschke M, et al. Open-source genomic analysis of Shiga-toxin-producing E. coli O104:H4. N Engl J Med. 2011. 365:718–24.
4.The Korean Society of Infecious Diseases, Korean Society for Chemotherapy, The Korean Society of Clinical Microbiology. Clinical guideline for the diagnosis and treatment of gastrointestinal infections. Infect Chemother. 2010. 42:323–61.
5.Korea Centers for Disease Control and Prevention. The prevalence and characteristics of bacteria causing acute diarrhea in Korea, 2008.[Online. (last visited on 14 August 2012).
6.Murry PR., Baron EJ, et al. eds. Manual of Clinical Microbiology. 9th ed, Washington DC; American Society for Microbiology, 2007: 935-7.
7.Clinical and Laboratory Standards Institute. Performance standard for antimicrobial susceptibility testing; twentieth informational supplement; Approved guideline. Document M100-S20. Wayne, PA; Clinical and Laboratory Standards Institute. 2010.
8.Clinical and Laboratory Standards Institute. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria; Approved guideline. Document M45-A. Wayne, PA; Clinical and Laboratory Standards Institute. 2006.
9.Thapar N., Sanderson IR. Diarrhoea in children: an interface between developing and developed countries. Lancet. 2004. 363:641–53.
10.Kendall ME., Crim S., Fullerton K., Han PV., Cronquist AB., Shiferaw B, et al. Travel-associated enteric infections diagnosed after return to the United States, Foodborne Diseases Active Surveillance Network (FoodNet), 2004-2009. Clin Infect Dis. 2012. 54(Suppl 5):S480–7.
11.CDC web sites on center for emerging and zoonotic infectious diseases.[Online. (last visited on 14 August 2012).
12.Jin Y., Kim J., Jung J., Jeon S., Lee J., Oh Y, et al. Characterization of antimicrobial resistance patterns and integrons of nontyphoid Salmonella isolates from infants in Seoul. Korean J Microbiol. 2010. 46:326–33.
13.Seo S., Lee MA. The serogroup and antimicrobial resistance of Salmonella spp. isolated from the clinical specimens during 6 years in a Tertiary University Hospital. Korean J Clin Microbiol. 2004. 7:72–6.
14.Li WC., Huang FY., Liu CP., Weng LC., Wang NY., Chiu NC, et al. Ceftriaxone resistance of nontyphoidal Salmonella enterica isolates in Northern Taiwan attributable to production of CTX-M-14 and CMY-2 beta-lactamases. J Clin Microbiol. 2005. 43:3237–43.
15.Korea Centers for Disease Control and Prevention. Communicable Diseases Weekly Report, 2001.1:10.[Online. (last visited on 14 August 2012).
16.CDC web sites on FoodNet.[Online. (last visited on 14 August 2012).
17.Cho MC., Noh SA., Kim MN., Kim KM. Direct application of multiplex PCR on stool specimens for detection of enteropathogenic bacteria. Korean J Clin Microbiol. 2010. 13:162–8.
18.Kwon SR., Oh YJ., Eum HS., Cho BK., Lee D., Park WK, et al. Estimated magnitude of an outbreak of Vibrio parahaemolyticus enteritis in inchon, Korea. Korean J Infect Dis. 2000. 32:100–7.
19.Murry PR., Baron EJ, et al. eds. Manual of Clinical Microbiology. 9th ed, Washington DC; American Society for Microbiology, 2007: 689-704.
22.Lee K., Yong D., Yum JH., Kim HH., Chong Y. Diversity of TEM-52 extended-spectrum beta-lactamase-producing non-typhoidal Salmonella isolates in Korea. J Antimicrob Chemother. 2003. 52:493–6.
20.Cho SH., Shin HH., Choi YH., Park MS., Lee BK. Enteric bacteria isolated from acute diarrheal patients in the Republic of Korea between the year 2004 and 2006. J Microbiol. 2008. 46:325–30.
21.Rautelin HI., Renkonen OV., von Bonsdorff CH., Lähdevirta J., Pitkänen T., Järvinen A, et al. Prospective study of the etiology of diarrhea in adult outpatients and inpatients. Scand J Gastroenterol. 1989. 24:329–33.
23.Yong D., Lim YS., Yum JH., Lee H., Lee K., Kim EC, et al. Nosocomial outbreak of pediatric gastroenteritis caused by CTX- M-14-type extended-spectrum beta-lactamase-producing strains of Salmonella enterica serovar London. J Clin Microbiol. 2005. 43:3519–21.
24.Koirala J. Multidrug-resistant Salmonella enterica. Lancet Infect Dis. 2011. 11:808–9.
25.Koirala KD., Thanh DP., Thapa SD., Arjyal A., Karkey A., Dongol S, et al. Highly resistant Salmonella enterica serovar Typhi with a novel gyrA mutation raises questions about the long-term efficacy of older fluoroquinolones for treating typhoid fever. Antimicrob Agents Chemother. 2012. 56:2761–2.
26.Tamang MD., Nam HM., Kim A., Lee HS., Kim TS., Kim MJ, et al. Prevalence and mechanisms of quinolone resistance among selected nontyphoid Salmonella isolated from food animals and humans in Korea. Foodborne Pathog Dis. 2011. 8:1199–206.
27.Sam WI., Lyons MM., Waghorn DJ. Increasing rates of ciprofloxacin resistant Campylobacter. J Clin Pathol. 1999. 52:709.
28.Murphy GS Jr., Echeverria P., Jackson LR., Arness MK., LeBron C., Pitarangsi C. Ciprofloxacin- and azithromycin-resistant Campylobacter causing traveler's diarrhea in U.S. troops deployed to Thailand in 1994. Clin Infect Dis. 1996. 22:868–9.
29.Johnson JY., McMullen LM., Hasselback P., Louie M., Jhangri G., Saunders LD. Risk factors for ciprofloxacin resistance in reported Campylobacter infections in southern Alberta. Epidemiol Infect. 2008. 136:903–12.
30.Kim SM., Kim EC., Choi MR., So HA., Shim ES., Kim ES, et al. Cytolethal distending toxin production, genotypes and antimicrobial susceptibility of Campylobacter jejuni isolates from diarrhea patients and chickens. J Bacteriol Virol. 2008. 38:207–19.
31.Pollett S., Rocha C., Zerpa R., Patiño L., Valencia A., Camiña M, et al. Campylobacter antimicrobial resistance in Peru: a ten-year observational study. BMC Infect Dis. 2012. 12:193.
Full Text Links
  • ACM
export Copy
  • Twitter
  • Facebook
Similar articles
Copyright © 2023 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: