J Bacteriol Virol.  2011 Dec;41(4):213-223. 10.4167/jbv.2011.41.4.213.

Herpesviral Interaction with Autophagy

Affiliations
  • 1Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA. chengyu.liang@usc.edu

Abstract

Autophagy constitutes a major catabolic hub for the quality control of intracellular entities of eukaryotic cells, and is emerging as an essential part of the host antiviral defense mechanism. However, in turn, viruses have evolved elegant strategies to co-opt various stages of the cellular autophagy pathway to establish virulence in vivo. This is particularly the case in the ubiquitous and persistent herpesvirus infection. In this review, I will focus on recent findings regarding the crosstalk between the herpes virus family and the autophagy pathway, with a look at the molecular mechanisms they use to disturb cells' autophagy regulation and eventually result in persistence and pathogenesis.

Keyword

Autophagy; Virus; Innate immunity; Infection

MeSH Terms

Autophagy
Eukaryotic Cells
Herpesviridae Infections
Humans
Immunity, Innate
Quality Control
Viruses

Figure

  • Figure 1. Overview of the autophagy pathway. Autophagy proceeds through a series of steps including autophagy signal induction, vesicle nucleation, membrane elongation, completion of the autophagosome, autophagosome maturation by fusion with endosomes and lysosomes, followed by degradation of autophagic cargoes, and recycling of the resulting molecules. The induction of autophagy by various stimuli signals through the ‘nutrient sensor’ mTOR. Under nutrient-rich conditions, mTOR binds and hyper-phosphorylates the ULK1/2 complex comprised of ULK1/2, Atg13, and FIP200 to repress autophagy. Inactivation of mTOR leads to the ULK1/2 complex hypophosphorylated, which allows the isolation membrane to expand. Vesicle nucleation is confined to the phosphatidylinositol-3-phosphate (PtdIns(3)P)-containing vesicles and is driven by the PI3KC3 complex, which consists of three major components, including Vps34, Vps15, and Beclin1. The activity of this lipid kinase complex is regulated by various positive and negative (black) regulators that associate with Beclin1. Two ubiquitin-like conjugation systems are involved in autophagosomal membrane expansion and completion: one is LC3-phosphatidylethanolamine (PE) conjugation and the other is Atg12-Atg5-Atg16 conjugation. The last steps of autophagy involve the docking and fusion of completed autophagosomes with endosomes and lysosomes sequentially, which signifies the maturation stage of autophagy regulated by various endosome/lysosome-related factors and inhibitory regulators (black). Finally, the inner membrane of the autophagosome and its sequestered materials are degraded by the lysosomal enzymes with the end products of proteolysis recycled. In antigen-presenting cells, autophagosome can also fuse with MHC class II loading compartments (MIICs), a subset of multivesicular bodies (MVBs), whereby autophagic cargoes including viral antigens can be delivered for MHC class II presentation.

  • Figure 2. Herpesviral interaction with the autophagy machinery. Autophagy can sanitize intracellular environment by directly capturing virions or viral components and delivering them for lysosomal degradation. It can also facilitate the antigen presentation of viral peptides to the MHC I/II pathway for adaptive immune response. The colored boxes present potential mechanisms that are used by herpesviruses to subvert or hijack cellular autophagy for their survival, propagation, and pathogenesis. The neurotropic α-herpesvirus HSV-1 proteins, ICP34.5, US11 and gB, have been shown to block the PKR-eIF2α-mediated autophagy activation or directly target Beclin1 for autophagy subversion (ICP34.5). The β-herpesvirus, HCMV, appears to blunt autophagy through both the mTOR-dependent or -independent pathways. γ-herpesviruses encode vBcl-2 and vFLIP to inhibit Beclin1-mediated autophagosome formation and Atg3-mediated autophagosome elongation, respectively, whereas the LMP1 protein of EBV and the RTA protein of KSHV were found to trigger autophagy either for the optimal survival of infected cells or for the acute replication and spreading of the virus. Thus, autophagy modulation is a common strategy employed by herpesviruses.


Cited by  1 articles

Current Understanding of HMGB1-mediated Autophagy
Man Sup Kwak, Jeon-Soo Shin
J Bacteriol Virol. 2013;43(2):148-154.    doi: 10.4167/jbv.2013.43.2.148.


Reference

1). Kudchodkar SB, Levine B. Viruses and autophagy. Rev Med Virol. 2009; 19:359–78.
Article
2). Virgin HW, Levine B. Autophagy genes in immunity. Nat Immunol. 2009; 10:461–70.
Article
3). Kim HJ, Lee S, Jung JU. When autophagy meets viruses: a double-edged sword with functions in defense and offense. Semin Immunopathol. 2010; 32:323–41.
Article
4). Campoy E, Colombo MI. Autophagy subversion by bacteria. Curr Top Microbiol Immunol. 2009; 335:227–50.
Article
5). Deretic V. Autophagy in infection. Curr Opin Cell Biol. 2010; 22:252–62.
Article
6). Shoji-Kawata S, Levine B. Autophagy, antiviral immunity, and viral countermeasures. Biochim Biophys Acta. 2009; 1793:1478–84.
Article
7). Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol. 2007; 8:931–7.
Article
8). Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol. 2010; 22:124–31.
Article
9). Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008; 132:27–42.
Article
10). Neufeld TP. TOR-dependent control of autophagy: biting the hand that feeds. Curr Opin Cell Biol. 2010; 22:157–68.
Article
11). Liang C, Jung JU. Autophagy genes as tumor suppressors. Curr Opin Cell Biol. 2010; 22:226–33.
Article
12). Talloczy Z, Jiang W, Virgin HW 4th, Leib DA, Scheuner D, Kaufman RJ, et al. Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci U S A. 2002; 99:190–5.
13). Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004; 6:463–77.
14). Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol. 2009; 11:1433–7.
Article
15). Yen WL, Shintani T, Nair U, Cao Y, Richardson BC, Li Z, et al. The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J Cell Biol. 2010; 188:101–14.
Article
16). English L, Chemali M, Duron J, Rondeau C, Laplante A, Gingras D, et al. Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat Immunol. 2009; 10:480–7.
Article
17). Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell. 2010; 141:656–67.
Article
18). Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol. 2010; 12:747–57.
Article
19). Liang C. Negative regulation of autophagy. Cell Death Differ. 2010; 17:1807–15.
Article
20). E X, Hwang S, Oh S, Lee JS, Jeong JH, Gwack Y, et al. Viral Bcl-2-mediated evasion of autophagy aids chronic infection of gammaherpesvirus 68. PLoS Pathog. 2009; 5:e1000609.
21). Orvedahl A, Levine B. Autophagy and viral neurovirulence. Cell Microbiol. 2008; 10:1747–56.
Article
22). Orvedahl A, Alexander D, Tallóczy Z, Sun Q, Wei Y, Zhang W, et al. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe. 2007; 1:23–35.
Article
23). Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature. 2009; 461:654–8.
Article
24). Eskelinen EL. Maturation of autophagic vacuoles in Mammalian cells. Autophagy. 2005; 1:1–10.
Article
25). Nara A, Mizushima N, Yamamoto A, Kabeya Y, Ohsumi Y, Yoshimori T. SKD1 AAA ATPase-dependent endosomal transport is involved in autolysosome formation. Cell Struct Funct. 2002; 27:29–37.
Article
26). Tamai K, Tanaka N, Nara A, Yamamoto A, Nakagawa I, Yoshimori T, et al. Role of Hrs in maturation of autophagosomes in mammalian cells. Biochem Biophys Res Commun. 2007; 360:721–7.
Article
27). Liang C, Lee JS, Inn KS, Gack MU, Li Q, Roberts EA, et al. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol. 2008; 10:776–87.
Article
28). Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol. 2009; 11:468–76.
Article
29). Li Y, Wang LX, Yang G, Hao F, Urba WJ, Hu HM. Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res. 2008; 68:6889–95.
Article
30). Taylor GS, Mautner J, Munz C. Autophagy in herpesvirus immune control and immune escape. Herpesviridae. 2011; 2:2.
Article
31). Chemali M, Radtke K, Desjardins M, English L. Alternative pathways for MHC class I presentation: a new function for autophagy. Cell Mol Life Sci. 2011; 68:1533–41.
Article
32). Liang C, Lee JS, Jung JU. Immune evasion in Kaposi's sarcoma-associated herpes virus associated oncogenesis. Semin Cancer Biol. 2008; 18:423–36.
Article
33). Damania B. Oncogenic gamma-herpesviruses: comparison of viral proteins involved in tumorigenesis. Nat Rev Microbiol. 2004; 2:656–68.
34). Knipe DM, Cliffe A. Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol. 2008; 6:211–21.
Article
35). Thorley-Lawson DA, Allday MJ. The curious case of the tumour virus: 50 years of Burkitt's lymphoma. Nat Rev Microbiol. 2008; 6:913–24.
Article
36). Levine B. Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell. 2005; 120:159–62.
37). Tallóczy Z, Virgin HW 4th, Levine B. PKR-dependent autophagic degradation of herpes simplex virus type 1. Autophagy. 2006; 2:24–9.
38). He B, Gross M, Roizman B. The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci U S A. 1997; 94:843–8.
39). Chou J, Kern ER, Whitley RJ, Roizman B. Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science. 1990; 250:1262–6.
40). Orvedahl A, Levine B. Eating the enemy within: autophagy in infectious diseases. Cell Death Differ. 2009; 16:57–69.
Article
41). Alexander DE, Ward SL, Mizushima N, Levine B, Leib DA. Analysis of the role of autophagy in replication of herpes simplex virus in cell culture. J Virol. 2007; 81:12128–34.
Article
42). Alexander DE, Leib DA. Xenophagy in herpes simplex virus replication and pathogenesis. Autophagy. 2008; 4:101–3.
Article
43). Dengjel J, Schoor O, Fischer R, Reich M, Kraus M, Müller M, et al. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci U S A. 2005; 102:7922–7.
Article
44). Wu H, Kapoor P, Frappier L. Separation of the DNA replication, segregation, and transcriptional activation functions of Epstein-Barr nuclear antigen 1. J Virol. 2002; 76:2480–90.
Article
45). Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science. 2005; 307:593–6.
Article
46). Leung CS, Haigh TA, Mackay LK, Rickinson AB, Taylor GS. Nuclear location of an endogenously expressed antigen, EBNA1, restricts access to macro-autophagy and the range of CD4 epitope display. Proc Natl Acad Sci U S A. 2010; 107:2165–70.
Article
47). Hansen TH, Bouvier M. MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol. 2009; 9:503–13.
Article
48). Leib DA, Alexander DE, Cox D, Yin J, Ferguson TA. Interaction of ICP34.5 with Beclin 1 modulates herpes simplex virus type 1 pathogenesis through control of CD4+ T-cell responses. J Virol. 2009; 83:12164–71.
49). Broberg EK, Peltoniemi J, Nygårdas M, Vahlberg T, Röyttä M, Hukkanen V. Spread and replication of and immune response to gamma134.5-negative herpes simplex virus type 1 vectors in BALB/c mice. J Virol. 2004; 78:13139–52.
50). English L, Chemali M, Desjardins M. Nuclear membrane-derived autophagy, a novel process that participates in the presentation of endogenous viral antigens during HSV-1 infection. Autophagy. 2009; 5:1026–9.
Article
51). Lin LT, Dawson PW, Richardson CD. Viral interactions with macroautophagy: a double-edged sword. Virology. 2010; 402:1–10.
Article
52). Harrow S, Papanastassiou V, Harland J, Mabbs R, Petty R, Fraser M, et al. HSV1716 injection into the brain adjacent to tumour following surgical resection of high-grade glioma: safety data and long-term survival. Gene Ther. 2004; 11:1648–58.
Article
53). Chou J, Chen JJ, Gross M, Roizman B. Association of a M(r) 90,000 phosphoprotein with protein kinase PKR in cells exhibiting enhanced phosphorylation of translation initiation factor eIF-2 alpha and premature shutoff of protein synthesis after infection with gamma 134.5- mutants of herpes simplex virus 1. Proc Natl Acad Sci U S A. 1995; 92:10516–20.
Article
54). Markovitz NS, Baunoch D, Roizman B. The range and distribution of murine central nervous system cells infected with the gamma(1)34.5-mutant of herpes simplex virus 1. J Virol. 1997; 71:5560–9.
55). He B, Chou J, Liebermann DA, Hoffman B, Roizman B. The carboxyl terminus of the murine MyD116 gene substitutes for the corresponding domain of the gamma(1)34.5 gene of herpes simplex virus to preclude the premature shutoff of total protein synthesis in infected human cells. J Virol. 1996; 70:84–90.
Article
56). Orvedahl A, Levine B. Viral evasion of autophagy. Autophagy. 2008; 4:280–5.
Article
57). Mulvey M, Poppers J, Sternberg D, Mohr I. Regulation of eIF2alpha phosphorylation by different functions that act during discrete phases in the herpes simplex virus type 1 life cycle. J Virol. 2003; 77:10917–28.
58). Peters GA, Khoo D, Mohr I, Sen GC. Inhibition of PACT-mediated activation of PKR by the herpes simplex virus type 1 Us11 protein. J Virol. 2002; 76:11054–64.
Article
59). Mulvey M, Arias C, Mohr I. Maintenance of endoplasmic reticulum (ER) homeostasis in herpes simplex virus type 1-infected cells through the association of a viral glycoprotein with PERK, a cellular ER stress sensor. J Virol. 2007; 81:3377–90.
Article
60). Griffiths P. Cytomegalovirus infection of the central nervous system. Herpes. 2004; 2:95A–104A.
61). Chaumorcel M, Souquère S, Pierron G, Codogno P, Esclatine A. Human cytomegalovirus controls a new autophagy-dependent cellular antiviral defense mechanism. Autophagy. 2008; 4:46–53.
Article
62). Oh S, E X, Hwang S, Liang C. Autophagy evasion in herpesviral latency. Autophagy. 2010; 6:151–2.
Article
63). Cheng EH, Nicholas J, Bellows DS, Hayward GS, Guo HG, Reitz MS, et al. A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc Natl Acad Sci U S A. 1997; 94:690–4.
Article
64). Ojala PM, Tiainen M, Salven P, Veikkola T, Castaños-Vélez E, Sarid R, et al. Kaposi's sarcoma-associated herpesvirus-encoded v-cyclin triggers apoptosis in cells with high levels of cyclin-dependent kinase 6. Cancer Res. 1999; 59:4984–9.
65). Wang GH, Garvey TL, Cohen JI. The murine gammaherpesvirus-68 M11 protein inhibits Fas- and TNF-induced apoptosis. J Gen Virol. 1999; 80:2737–40.
66). Loh J, Huang Q, Petros AM, Nettesheim D, van Dyk LF, Labrada L, et al. A surface groove essential for viral Bcl-2 function during chronic infection in vivo. PLoS Pathog. 2005; 1:e10.
67). Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005; 122:927–39.
Article
68). Maiuri MC, Criollo A, Tasdemir E, Vicencio JM, Tajeddine N, Hickman JA, et al. BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy. 2007; 3:374–6.
Article
69). Sinha S, Colbert CL, Becker N, Wei Y, Levine B. Molecular basis of the regulation of Beclin 1-dependent autophagy by the gamma-herpesvirus 68 Bcl-2 homolog M11. Autophagy. 2008; 4:989–97.
70). Ku B, Woo JS, Liang C, Lee KH, Jung JU, Oh BH. An insight into the mechanistic role of Beclin 1 and its inhibition by prosurvival Bcl-2 family proteins. Autophagy. 2008; 4:519–20.
Article
71). Oh S, E X, Hwang S, Liang C. Autophagy evasion in herpesviral latency. Autophagy. 2010; 6:151–2.
Article
72). Lee JS, Li Q, Lee JY, Lee SH, Jeong JH, Lee HR, et al. FLIP-mediated autophagy regulation in cell death control. Nat Cell Biol. 2009; 11:1355–62.
Article
73). Chaudhary PM, Jasmin A, Eby MT, Hood L. Modulation of the NF-kappa B pathway by virally encoded death effector domains-containing proteins. Oncogene. 1999; 18:5738–46.
74). Guasparri I, Keller SA, Cesarman E. KSHV vFLIP is essential for the survival of infected lymphoma cells. J Exp Med. 2004; 199:993–1003.
Article
75). Sun Q, Zachariah S, Chaudhary PM. The human herpes virus 8-encoded viral FLICE-inhibitory protein induces cellular transformation via NF-kappaB activation. J Biol Chem. 2003; 278:52437–45.
76). Qing G, Yan P, Qu Z, Liu H, Xiao G. Hsp90 regulates processing of NF-kappa B2 p100 involving protection of NF-kappa B-inducing kinase (NIK) from autophagy-mediated degradation. Cell Res. 2007; 17:520–30.
77). Lee DY, Sugden B. The latent membrane protein 1 oncogene modifies B-cell physiology by regulating autophagy. Oncogene. 2008; 27:2833–42.
Article
78). Wen HJ, Yang Z, Zhou Y, Wood C. Enhancement of autophagy during lytic replication by the Kaposi's sarcoma-associated herpesvirus replication and transcription activator. J Virol. 2010; 84:7448–58.
Article
Full Text Links
  • JBV
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr