Allergy Asthma Immunol Res.  2012 May;4(3):116-121. 10.4168/aair.2012.4.3.116.

Updates in the Relationship Between Human Rhinovirus and Asthma

Affiliations
  • 1Department of Pediatrics, Seoul Paik Hospital, Inje University College of Medicine, Seoul, Korea.
  • 2Allergy & Respiratory Research Laboratory, Seoul Paik Hospital, Inje University College of Medicine, Seoul, Korea.
  • 3Department of Pediatrics, University of Wisconsin, Madison, WI, USA. gern@medicine.wisc.edu
  • 4Department of Internal Medicine, University of Wisconsin, Madison, WI, USA.

Abstract

Human rhinovirus (HRV) is a nonenveloped, single stranded RNA virus belonging to the family Picornaviridae. HRV infections can cause both upper and lower respiratory illnesses in children and adults. Lower respiratory illnesses are more likely to occur in specific high risk groups, including infants, and children and adults with asthma. The relationships between rates of infection and the risk of clinical illness and exacerbation are not completely understood. Recent studies employing polymerase chain reaction and other molecular techniques indicate that there are new branches on the HRV family tree, and one characteristic of recently detected viruses is that they cannot be detected by standard tissue culture. Here we review the current literature and discuss new advances in understanding the link between HRV and asthma.

Keyword

Asthma; human rhinovirus; infection

MeSH Terms

Adult
Aluminum Hydroxide
Asthma
Carbonates
Child
Humans
Infant
Pedigree
Picornaviridae
Polymerase Chain Reaction
Rhinovirus
RNA Viruses
Aluminum Hydroxide
Carbonates

Figure

  • Figure Mechanisms of rhinovirus-induced airway inflammation. Human rhinovirus binds to ICAM-1 and other receptors to begin the replication cycle. Viral infections induce a variety of mediators, cytokines, and chemokines from epithelial cells and airway leukocytes that initiate an inflammatory response, including chemotaxis of neutrophils, and eosinophils. An antiviral response is also mounted by both epithelial and dendritic cells, producing type I interferons (IFNs). Airway eosinophils and allergic sensitization are risk factors for more severe rhinovirus illnesses, possibly by suppressing antiviral responses, which may be deficient in asthma. ICAM, intercellular adhesion molecule; IL, interleukin; LTC4, leukotriene C4; PG, prostaglandins; NO, nitric oxide.


Cited by  2 articles

Prevalence of Respiratory Viral Infections in Korean Adult Asthmatics With Acute Exacerbations: Comparison With Those With Stable State
Ki-Hyun Seo, Da-Jeong Bae, Ji-Na Kim, Ho-Sung Lee, Yong-Hoon Kim, Jong-Sook Park, Myung-Shin Kim, Hun-Soo Chang, Ji-Hye Son, Dong-Gyu Baek, Jun-Suk Lee, Choon-Sik Park
Allergy Asthma Immunol Res. 2017;9(6):491-498.    doi: 10.4168/aair.2017.9.6.491.

Human Rhinovirus Infection Enhances the Th2 Environment in Allergic and Non-allergic Patients with Chronic Rhinosinusitis
Young-Kyung Ko, Yu-Lian Zhang, Jee Hye Wee, Doo Hee Han, Hyun Jik Kim, Chae-Seo Rhee
Clin Exp Otorhinolaryngol. 2021;14(2):217-224.    doi: 10.21053/ceo.2020.00444.


Reference

1. Arden KE, McErlean P, Nissen MD, Sloots TP, Mackay IM. Frequent detection of human rhinoviruses, paramyxoviruses, coronaviruses, and bocavirus during acute respiratory tract infections. J Med Virol. 2006. 78:1232–1240.
2. Garbino J, Gerbase MW, Wunderli W, Deffernez C, Thomas Y, Rochat T, Ninet B, Schrenzel J, Yerly S, Perrin L, Soccal PM, Nicod L, Kaiser L. Lower respiratory viral illnesses: improved diagnosis by molecular methods and clinical impact. Am J Respir Crit Care Med. 2004. 170:1197–1203.
3. Lee BE, Robinson JL, Khurana V, Pang XL, Preiksaitis JK, Fox JD. Enhanced identification of viral and atypical bacterial pathogens in lower respiratory tract samples with nucleic acid amplification tests. J Med Virol. 2006. 78:702–710.
4. Johnston SL, Sanderson G, Pattemore PK, Smith S, Bardin PG, Bruce CB, Lambden PR, Tyrrell DA, Holgate ST. Use of polymerase chain reaction for diagnosis of picornavirus infection in subjects with and without respiratory symptoms. J Clin Microbiol. 1993. 31:111–117.
5. Tan WC. Viruses in asthma exacerbations. Curr Opin Pulm Med. 2005. 11:21–26.
6. Palmenberg AC, Rathe JA, Liggett SB. Analysis of the complete genome sequences of human rhinovirus. J Allergy Clin Immunol. 2010. 125:1190–1199. quiz 200-1.
7. Arden KE, Mackay IM. Newly identified human rhinoviruses: molecular methods heat up the cold viruses. Rev Med Virol. 2010. 20:156–176.
8. Bartlett NW, Johnston SL. Mahy BWJ, editor. Rhinoviruses. Encyclopedia of virology. 2008. Oxford: Elsevier;467–475.
9. Brownlee JW, Turner RB. New developments in the epidemiology and clinical spectrum of rhinovirus infections. Curr Opin Pediatr. 2008. 20:67–71.
10. DeMore JP, Weisshaar EH, Vrtis RF, Swenson CA, Evans MD, Morin A, Hazel E, Bork JA, Kakumanu S, Sorkness R, Busse WW, Gern JE. Similar colds in subjects with allergic asthma and nonatopic subjects after inoculation with rhinovirus-16. J Allergy Clin Immunol. 2009. 124:245–252. 52.e1–52.e3.
11. Lee WM, Wang W. Human rhinovirus type 16: mutant V1210A requires capsid-binding drug for assembly of pentamers to form virions during morphogenesis. J Virol. 2003. 77:6235–6244.
12. Winther B, Hayden FG, Hendley JO. Picornavirus infections in children diagnosed by RT-PCR during longitudinal surveillance with weekly sampling: Association with symptomatic illness and effect of season. J Med Virol. 2006. 78:644–650.
13. Gwaltney JM Jr, Hendley JO, Simon G, Jordan WS Jr. Rhinovirus infections in an industrial population. I. The occurrence of illness. N Engl J Med. 1966. 275:1261–1268.
14. van Benten I, Koopman L, Niesters B, Hop W, van Middelkoop B, de Waal L, van Drunen K, Osterhaus A, Neijens H, Fokkens W. Predominance of rhinovirus in the nose of symptomatic and asymptomatic infants. Pediatr Allergy Immunol. 2003. 14:363–370.
15. Lemanske RF Jr, Jackson DJ, Gangnon RE, Evans MD, Li Z, Shult PA, Kirk CJ, Reisdorf E, Roberg KA, Anderson EL, Carlson-Dakes KT, Adler KJ, Gilbertson-White S, Pappas TE, Dasilva DF, Tisler CJ, Gern JE. Rhinovirus illnesses during infancy predict subsequent childhood wheezing. J Allergy Clin Immunol. 2005. 116:571–577.
16. Jartti T, Lehtinen P, Vuorinen T, Koskenvuo M, Ruuskanen O. Persistence of rhinovirus and enterovirus RNA after acute respiratory illness in children. J Med Virol. 2004. 72:695–699.
17. Bartlett NW, Walton RP, Edwards MR, Aniscenko J, Caramori G, Zhu J, Glanville N, Choy KJ, Jourdan P, Burnet J, Tuthill TJ, Pedrick MS, Hurle MJ, Plumpton C, Sharp NA, Bussell JN, Swallow DM, Schwarze J, Guy B, Almond JW, Jeffery PK, Lloyd CM, Papi A, Killington RA, Rowlands DJ, Blair ED, Clarke NJ, Johnston SL. Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation. Nat Med. 2008. 14:199–204.
18. Baum A, García-Sastre A. Induction of type I interferon by RNA viruses: cellular receptors and their substrates. Amino Acids. 2010. 38:1283–1299.
19. Kelly JT, Busse WW. Host immune responses to rhinovirus: mechanisms in asthma. J Allergy Clin Immunol. 2008. 122:671–682. quiz 83-4.
20. Rakes GP, Arruda E, Ingram JM, Hoover GE, Zambrano JC, Hayden FG, Platts-Mills TA, Heymann PW. Rhinovirus and respiratory syncytial virus in wheezing children requiring emergency care. IgE and eosinophil analyses. Am J Respir Crit Care Med. 1999. 159:785–790.
21. Lau C, Wang X, Song L, North M, Wiehler S, Proud D, Chow CW. Syk associates with clathrin and mediates phosphatidylinositol 3-kinase activation during human rhinovirus internalization. J Immunol. 2008. 180:870–880.
22. Nurani G, Lindqvist B, Casasnovas JM. Receptor priming of major group human rhinoviruses for uncoating and entry at mild low-pH environments. J Virol. 2003. 77:11985–11991.
23. Gern JE. Rhinovirus respiratory infections and asthma. Am J Med. 2002. 112:Suppl 6A. 19S–27S.
24. Lemanske RF. Viral infections and asthma inception. J Allergy Clin Immunol. 2004. 114:1023–1026.
25. Kotaniemi-Syrjänen A, Vainionpää R, Reijonen TM, Waris M, Korhonen K, Korppi M. Rhinovirus-induced wheezing in infancy--the first sign of childhood asthma. J Allergy Clin Immunol. 2003. 111:66–71.
26. Jackson DJ, Gangnon RE, Evans MD, Roberg KA, Anderson EL, Pappas TE, Printz MC, Lee WM, Shult PA, Reisdorf E, Carlson-Dakes KT, Salazar LP, DaSilva DF, Tisler CJ, Gern JE, Lemanske RF Jr. Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. Am J Respir Crit Care Med. 2008. 178:667–672.
27. Kusel MM, de Klerk NH, Kebadze T, Vohma V, Holt PG, Johnston SL, Sly PD. Early-life respiratory viral infections, atopic sensitization, and risk of subsequent development of persistent asthma. J Allergy Clin Immunol. 2007. 119:1105–1110.
28. Gern JE. Rhinovirus and the initiation of asthma. Curr Opin Allergy Clin Immunol. 2009. 9:73–78.
29. Jackson DJ. The role of rhinovirus infections in the development of early childhood asthma. Curr Opin Allergy Clin Immunol. 2010. 10:133–138.
30. Sly PD, Kusel M, Holt PG. Do early-life viral infections cause asthma? J Allergy Clin Immunol. 2010. 125:1202–1205.
31. Bartlett NW, McLean GR, Chang YS, Johnston SL. Genetics and epidemiology: asthma and infection. Curr Opin Allergy Clin Immunol. 2009. 9:395–400.
32. Contoli M, Message SD, Laza-Stanca V, Edwards MR, Wark PA, Bartlett NW, Kebadze T, Mallia P, Stanciu LA, Parker HL, Slater L, Lewis-Antes A, Kon OM, Holgate ST, Davies DE, Kotenko SV, Papi A, Johnston SL. Role of deficient type III interferon-lambda production in asthma exacerbations. Nat Med. 2006. 12:1023–1026.
33. Wark PA, Johnston SL, Bucchieri F, Powell R, Puddicombe S, Laza-Stanca V, Holgate ST, Davies DE. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J Exp Med. 2005. 201:937–947.
34. Denlinger LC, Sorkness RL, Lee WM, Evans M, Wolff M, Mathur S, Crisafi G, Gaworski K, Pappas TE, Vrtis R, Kelly EA, Gern JE, Jarjour NN. Lower Airway Rhinovirus Burden and the Seasonal Risk of Asthma Exacerbation. Am J Respir Crit Care Med. 2011. Forthcoming.
35. Olenec JP, Kim WK, Lee WM, Vang F, Pappas TE, Salazar LE, Evans MD, Bork J, Roberg K, Lemanske RF Jr, Gern JE. Weekly monitoring of children with asthma for infections and illness during common cold seasons. J Allergy Clin Immunol. 2010. 125:1001–1006.e1.
36. Sly PD, Boner AL, Björksten B, Bush A, Custovic A, Eigenmann PA, Gern JE, Gerritsen J, Hamelmann E, Helms PJ, Lemanske RF, Martinez F, Pedersen S, Renz H, Sampson H, von Mutius E, Wahn U, Holt PG. Early identification of atopy in the prediction of persistent asthma in children. Lancet. 2008. 372:1100–1106.
37. Kato A, Favoreto S Jr, Avila PC, Schleimer RP. TLR3- and Th2 cytokine-dependent production of thymic stromal lymphopoietin in human airway epithelial cells. J Immunol. 2007. 179:1080–1087.
38. Gill MA, Bajwa G, George TA, Dong CC, Dougherty II, Jiang N, Gan VN, Gruchalla RS. Counterregulation between the FcepsilonRI pathway and antiviral responses in human plasmacytoid dendritic cells. J Immunol. 2010. 184:5999–6006.
39. Bisgaard H, Hermansen MN, Loland L, Halkjaer LB, Buchvald F. Intermittent inhaled corticosteroids in infants with episodic wheezing. N Engl J Med. 2006. 354:1998–2005.
40. Hansbro NG, Horvat JC, Wark PA, Hansbro PM. Understanding the mechanisms of viral induced asthma: new therapeutic directions. Pharmacol Ther. 2008. 117:313–353.
41. Cheuk DK, Tang IW, Chan KH, Woo PC, Peiris MJ, Chiu SS. Rhinovirus infection in hospitalized children in Hong Kong: a prospective study. Pediatr Infect Dis J. 2007. 26:995–1000.
42. Edwards MR, Johnson MW, Johnston SL. Combination therapy: Synergistic suppression of virus-induced chemokines in airway epithelial cells. Am J Respir Cell Mol Biol. 2006. 34:616–624.
43. Jartti T, Lehtinen P, Vanto T, Vuorinen T, Hiekkanen H, Hartiala J, Mäkelä MJ, Ruuskanen O. Atopic characteristics of wheezing children and responses to prednisolone. Pediatr Pulmonol. 2007. 42:1125–1133.
44. Miller JL. Inhaled corticosteroids may cause only temporary slowing of growth in children, studies suggest. Am J Health Syst Pharm. 2000. 57:2142. 2149.
45. Bisgaard H. Study Group on Montelukast and Respiratory Syncytial Virus. A randomized trial of montelukast in respiratory syncytial virus postbronchiolitis. Am J Respir Crit Care Med. 2003. 167:379–383.
46. Bisgaard H, Zielen S, Garcia-Garcia ML, Johnston SL, Gilles L, Menten J, Tozzi CA, Polos P. Montelukast reduces asthma exacerbations in 2- to 5-year-old children with intermittent asthma. Am J Respir Crit Care Med. 2005. 171:315–322.
47. Busse WW, Morgan WJ, Gergen PJ, Mitchell HE, Gern JE, Liu AH, Gruchalla RS, Kattan M, Teach SJ, Pongracic JA, Chmiel JF, Steinbach SF, Calatroni A, Togias A, Thompson KM, Szefler SJ, Sorkness CA. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N Engl J Med. 2011. 364:1005–1015.
Full Text Links
  • AAIR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr