Korean J Lab Med.  2006 Feb;26(1):14-20. 10.3343/kjlm.2006.26.1.14.

Prevalence of Class A Extended-Spectrum beta-Lactamases in Clinical Isolates of Acinetobacter baumannii and Pseudomonas aeruginosa

Affiliations
  • 1Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea.
  • 2Department of Laboratory Medicine, Kosin University College of Medicine, Busan, Korea. kscpjsh@ns.kosinmed.or.kr

Abstract

BACKGROUND: Prevalence of class A extended-spectrum beta-lactamases (ESBLs) has been investigated repeatedly in members of family Enterobacteriaceae in Korea, but only rarely in Acinetobacter baumannii and Pseudomonas aeruginosa. The aims of this study were to determine the prevalence of class A ESBL-producing A. baumannii and P. aeruginosa and to characterize the genotypes.
METHODS
During the period of June to September 2004, clinical isolates of A. baumannii and P. aeruginosa were collected from patients in Kosin University Gospel Hospital, Busan, Korea. Antimicrobial susceptibility was determined by the disk diffusion and the agar dilution methods, and ESBLproduction by the double-disk synergy test. Transferability of ceftazidime-resistance of ESBL-producers were tested by conjugation. The isoelectric points of ESBLs were determined by isoelectric focusing. Searches for blaTEM, blaSHV, blaCTX-M, blaPER-1, blaVEB, and blaGES/IBC genes were performed by PCR amplification, and the genotypes of ESBLs were determined by a direct nucleotide sequence analysis of the amplified products.
RESULTS
A total of 58 clinical isolates of A. baumannii and 77 P. aeruginosa were collected. Three (5.2%) isolates of A. baumannii and four (5.2%) P. aeruginosa isolates showed positive results in the double-disk synergy test using ceftazidime and imipenem disks, and one (1.7%) A. baumannii and two (2.6%) P. aeruginosa isolates showed positive results in that test using ceftazidime and cefoxitin disks. The most prevalent class A ESBL genotype in A. baumannii isolates was blaPER-1 (n=6), and blaSHV-12 gene was also found in one P. aeruginosa isolate.
CONCLUSIONS
It is concluded that class A PER-1 ESBL-producing A. baumannii isolates are spreading, and SHV-12-producing P. aeruginosa has emerged in Korea. The spread of class A ESBLs could compromise the future usefulness of expanded-spectrum -lactam antibiotics for the treatment of A. baumannii and P. aeruginosa infections.

Keyword

Acinetobacter baumannii; Pseudomonas aeruginosa; Class A ESBL

MeSH Terms

Acinetobacter baumannii*
Acinetobacter*
Agar
Anti-Bacterial Agents
Base Sequence
beta-Lactamases*
Busan
Cefoxitin
Ceftazidime
Diffusion
Enterobacteriaceae
Genotype
Humans
Imipenem
Isoelectric Focusing
Isoelectric Point
Korea
Polymerase Chain Reaction
Prevalence*
Pseudomonas aeruginosa*
Pseudomonas*
Agar
Anti-Bacterial Agents
Cefoxitin
Ceftazidime
Imipenem
beta-Lactamases

Figure

  • Fig. 1. An example of double disk synergy obtained with an A baumannii isolate producing Ambler class A extended-spectrum β-lactamase. Two 30 μg-antibiotics disks (left, imipenem; right, cefoxitin) were placed 1.5 cm apart (margin to margin) around a disk containing 30 μg of ceftazidime.


Cited by  1 articles

Characteristics of Acquired β-lactamase Gene in Clinical Isolates of Multidrug-resistant Pseudomonas aeruginosa
Sun Yang Chung, Ji Youn Sung, Kye Chul Kwon, Jong Woo Park, Chi Seon Ko, So Youn Shin, Jeong Hoon Song, Sun Hoe Koo
Korean J Clin Microbiol. 2008;11(2):98-106.    doi: 10.5145/kjcm.2008.11.2.98.


Reference

References

1. Satake S, Yoshihara E, Nakae T. Diffusion of β-lactam antibiotics through liposome membranes reconstituted from purified porins of the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1990; 34:685–90.
2. Livermore DM. Interplay of impermeability and chromosomal β-lactamase activity in imipenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1992; 36:2046–8.
3. Chamberland S, L'Ecuyer J, Lessard C, Bernier M, Provencher P, Bergeron MG. Antibiotic susceptibility profiles of 941 gram-negative bacteria isolated from septicemic patients throughout Canada. The Canadian Study Group. Clin Infect Dis. 1992; 15:615–28.
4. Medeiros AA. Evolution and dissemination of β-lactamases accelerated by generations of β-lactam antibiotics. Clin Infect Dis. 1997; 24(S 1):S19–45.
5. Weldhagen GF, Poirel L, Nordmann P. Ambler class A extended-spectrum β-lactamases in Pseudomonas aeruginosa novel developments and clinical impact. Antimicrob Agents Chemother. 2003; 47:2385–92.
6. Bert F, Branger C, Lambert-Zechovsky N. Identification of PSE and OXA β-lactamase genes in Pseudomonas aeruginosa using PCR-restriction fragment length polymorphism. J Antimicrob Chemother. 2002; 50:11–8.
7. Mugnier P, Dubrous P, Casin I, Arlet G, Collatz E. A TEM-derived extended-spectrum β-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1996; 40:2488–93.
8. Poirel L, Ronco E, Naas T, Nordmann P. Extended-spectrum β-lactamase TEM-4 in Pseudomonas aeruginosa. Clin Microbiol Infect. 1999; 5:651–2.
9. Dubois V, Arpin C, Noury P, Quentin C. Clinical strain of Pseudomonas aeruginosa carrying a bla(TEM-21) gene located on a chromosomal interrupted TnA type transposon. Antimicrob Agents Chemother. 2002; 46:3624–6.
10. Marchandin H, Jean-Pierre H, De Champs C, Sirot D, Darbas H, Perigault PF, et al. Production of a TEM-24 plasmid-mediated extended-spectrum β-lactamase by a clinical isolate of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2000; 44:213–6.
11. Naas T, Philippon L, Poirel L, Ronco E, Nordmann P. An SHV-derived extended-spectrum β-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1999; 43:1281–4.
12. Chanawong A, M'Zali FH, Heritage J, Lulitanond A, Hawkey PM. SHV-12, SHV-5, SHV-2a and VEB-1 extended-spectrum β-lactamases in gram-negative bacteria isolated in a university hospital in Thailand. J Antimicrob Chemother. 2001; 48:839–52.
13. Huang ZM, Mao PH, Chen Y, Wu L, Wu J. Study on the molecular epidemiology of SHV type beta-lactamase-encoding genes of multiple-drug-resistant Acinetobacter baumannii. Zhonghua Liu Xing Bing Xue Za Zhi. 2004; 25:425–7.
14. Nordmann P, Ronco E, Naas T, Duport C, Michel-Briand Y, Labia R. Characterization of a novel extended-spectrum β-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1993; 37:962–9.
15. Vahaboglu H, Ozturk R, Aygun G, Coskunkan F, Yaman A, Kaygusuz A, et al. Widespread detection of PER-1-type extended-spectrum β-lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: a nationwide multicenter study. Antimicrob Agents Chemother. 1997; 41:2265–9.
16. Luzzaro F, Mantengoli E, Perilli M, Lombardi G, Orlandi V, Orsatti A, et al. Dynamics of a nosocomial outbreak of multidrug-resistant Pseudomonas aeruginosa producing the PER-1 extended-spectrum β-lactamase. J Clin Microbiol. 2001; 39:1865–70.
17. Yong D, Shin JH, Kim S, Lim Y, Yum JH, Lee K, et al. High prevalence of PER-1 extended-spectrum β-lactamase-producing Acinetobacter spp. in Korea. Antimicrob Agents Chemother. 2003; 47:1749–51.
18. Kim JM, Kang HK, Jeong SH, Bae IK, Kwon SB, Cho BK, et al. Prevalence of PER-1 Extended-Spectrum β-Lactamase-Producing Clinical Isolates of Acinetobacter baumannii in a University Hospital, Busan, Korea. Korean J Clin Microbiol. 2004; 7:20–6.
19. Poirel L, Naas T, Guibert M, Chaibi EB, Labia R, Nordmann P. Molecular and biochemical characterization of VEB-1, a novel class A extended-spectrum β-lactamase encoded by an Escherichia coli integron gene. Antimicrob Agents Chemother. 1999; 43:573–81.
20. Kim JY, Park YJ, Kim SI, Kang MW, Lee SO, Lee KY. Nosocomial outbreak by Proteus mirabilis producing extended-spectrum beta-lactamase VEB-1 in a Korean university hospital. J Antimicrob Chemother. 2004; 54:1144–7.
21. Poirel L, Le Thomas I, Naas T, Karim A, Nordmann P. Biochemical sequence analyses of GES-1, a novel class A extended-spectrum β-lactamase, and the class 1 integron In52 from Klebsiella pneumoniae. Antimicrob Agents Chemother. 2000; 44:622–32.
22. Poirel L, Weldhagen GF, Naas T, De Champs C, Dove MG, Nordmann P. GES-2, a class A β-lactamase from Pseudomonas aeruginosa with increased hydrolysis of imipenem. Antimicrob Agents Chemother. 2001; 45:2598–603.
23. Wachino J, Doi Y, Yamane K, Shibata N, Yagi T, Kubota T, et al. Nosocomial spread of ceftazidime-resistant Klebsiella pneumoniae strains producing a novel class A β-lactamase, GES-3, in a neonatal intensive care unit in Japan. Antimicrob Agents Chemother. 2004; 48:1960–7.
24. Wachino J, Doi Y, Yamane K, Shibata N, Yagi T, Kubota T, et al. Molecular characterization of a cephamycin-hydrolyzing and inhibitor-resistant class A β-lactamase, GES-4, possessing a single G170S substitution in the Ω-loop. Antimicrob Agents Chemother. 2004; 48:2905–10.
25. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing. Tenth informational supplement, M100-S10. Wayne, Pa.: National Committee for Clinical Laboratory Standards;2000.
26. National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically-5th ed., approved standards M7-A5. Wayne, Pa.: National Committee for Clinical Laboratory Standards;2000.
27. Miller J. Experiments in molecular genetics. N.Y.: Cold Spring Harbor Laboratory;1992. p. 82–5.
28. Watanabe M, Iyobe S, Inoue M, Mitsuhashi S. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1991; 35:147–51.
29. Ryoo NH, Kim EC, Hong SG, Park YJ, Lee K, Bae IK, et al. Dissemination of SHV-12 and CTX-M-type extended-spectrum β-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea. J Antimicrob Chemother. 2005; 56:698–702.
30. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977; 74:5463–7.
Article
31. Hong SG, Lee JW, Yong DG, Kim EC, Jeong SH, Park YJ, et al. Antimicrobial Resistance of Clinically Important Bacteria Isolated from 12 Hospitals in Korea. Korean J Clin Microbiol. 2004; 7:171–7.
32. Lee K, Lim JB, Yum JH, Yong D, Chong Y, Kim JM, et al. bla(VIM-2) cassette-containing novel integrons in metallo-β-lactamase-producing Pseudomonas aeruginosa and Pseudomonas putida isolates disseminated in a Korean hospital. Antimicrob Agents Chemother. 2002; 46:1053–8.
33. Jeon BC, Kwon KY, Jeong SH, Bae IK, Kwon SB, Cho BK, et al. Prevalence of OXA-23 Extended-Spectrum β-Lactamase-Producing Clinical Isolates of Acinetobacter baumannii in a University Hospital, Busan, Korea. Korean J Clin Microbiol. 2004; 7:139–47.
34. Poirel L, Girlich D, Naas T, Nordmann P. OXA-28, an extended-spectrum variant of OXA-10 β-lactamase from Pseudomonas aeruginosa and its plasmid- and integron-located gene. Antimicrob Agents Chemother. 2001; 45:447–53.
35. Jeong SH, Bae IK, Lee JH, Sohn SG, Kang GH, Jeon GJ, et al. Molecular characterization of extended-spectrum beta-lactamase produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. J Clin Microbiol. 2004; 42:2902–6.
36. Nuesch-Inderbinen MT, Kayser FH, Hachler H. Survey and molecular genetics of SHV β-lactamases in Enterobacteriaceae in Switzerland: two novel enzymes, SHV-11 and SHV-12. Antimicrob Agents Chemother. 1997; 41:943–9.
37. Hong SG, Kim SJ, Jeong SH, Chang LCH, Cho SR, Ahn JY, et al. Prevalence & Diversity of Extended-spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Isolates in Korea. Korean J Clin Microbiol. 2003; 6:149–55.
Full Text Links
  • KJLM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr