1. Mount DB, Yu AS. Brenner BM, editor. Transport of Inorganic Solutes: Sodium, Chloride, Potassium, Magnesium, Calcium, and Phosphate. Brenner & Rector's the kidney. 2008. 8th ed. Philadelphia: p. 185–192.
2. Hoenderop JG, Bindels RJ. Epithelial Ca
2+ and Mg
2+ channels in health and disease. J Am Soc Nephrol. 2005; 16:15–26. PMID:
15574510.
3. Nijenhuis T, Renkema KY, Hoenderop JG, Bindels RJ. Acid-base status determines the renal expression of Ca
2+ and Mg
2+ transport proteins. J Am Soc Nephrol. 2006; 17:617–626. PMID:
16421227.
4. Lee CT, Chen HC, Lai LW, Yong KC, Lien YH. Effects of furosemide on renal calcium handling. Am J Physiol Renal Physiol. 2007; 293:F1231–F1237. PMID:
17652376.
Article
5. Nijenhuis T, Hoenderop JG, Loffing J, van der Kemp AW, van Os CH, Bindels RJ. Thiazide-induced hypocalciuria is accompanied by a decreased expression of Ca
2+ transport proteins in kidney. Kidney Int. 2003; 64:555–564. PMID:
12846750.
6. Kiuchi-Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S. Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol. 2002; 13:875–886. PMID:
11912246.
Article
7. Ward DT, Riccardi D. Renal physiology of the extracellular calcium-sensing receptor. Pflugers Arch. 2002; 445:169–176. PMID:
12457237.
Article
8. Attie MF, Gill JR Jr, Stock JL, Spiegel AM, Downs RW Jr, Levine MA, et al. Urinary calcium excretion in familial hypocalciuric hypercalcemia. Persistence of relative hypocalciuria after induction of hypoparathyroidism. J Clin Invest. 1983; 72:667–676. PMID:
6874959.
Article
9. van de Graaf SF, Hoenderop JG, Bindels RJ. Regulation of TRPV5 and TRPV6 by associated proteins. Am J Physiol Renal Physiol. 2006; 290:F1295–F1302. PMID:
16682485.
Article
10. Hoenderop JG, Muller D, Van Der Kemp AW, Hartog A, Suzuki M, Ishibashi K, et al. Calcitriol controls the epithelial calcium channel in kidney. J Am Soc Nephrol. 2001; 12:1342–1349. PMID:
11423563.
Article
11. Nijenhuis T, Hoenderop JG, van der Kemp AW, Bindels RJ. Localization and regulation of the epithelial Ca
2+ channel TRPV6 in the kidney. J Am Soc Nephrol. 2003; 14:2731–2740. PMID:
14569082.
12. Hoenderop JG, van Leeuwen JP, van der Eerden BC, Kersten FF, van der Kemp AW, Merillat AM, et al. Renal Ca
2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest. 2003; 112:1906–1914. PMID:
14679186.
13. Hoenderop JG, Bindels RJ. Calciotropic and magnesiotropic TRP channels. Physiology (Bethesda). 2008; 23:32–40. PMID:
18268363.
Article
14. Nijenhuis T, Vallon V, van der Kemp AW, Loffing J, Hoenderop JG, Bindels RJ. Enhanced passive Ca
2+ reabsorption and reduced Mg
2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest. 2005; 115:1651–1658. PMID:
15902302.
15. Lee CT, Shang S, Lai LW, Yong KC, Lien YH. Effect of thiazide on renal gene expression of apical calcium channels and calbindins. Am J Physiol Renal Physiol. 2004; 287:F1164–F1170. PMID:
15265769.
Article
16. Jang HR, Lee JW, Heo NJ, Lee JH, Oh YK, Na KY, et al. Effects of thiazide on the expression of transient receptor potential vanilloid 5 and calbindin-D28K in a hypercalciuria rat model [Abstract]. J Am Soc Nephrol. 2006; 17:355A.
17. Lambers TT, Mahieu F, Oancea E, Hoofd L, de Lange F, Mensenkamp AR, et al. Calbindin-D
28K dynamically controls TRPV5-mediated Ca
2+ transport. EMBO J. 2006; 25:2978–2988. PMID:
16763551.
18. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997; 390:45–51. PMID:
9363890.
Article
19. Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A, et al. alpha-Klotho as a regulator of calcium homeostasis. Science. 2007; 316:1615–1618. PMID:
17569864.
20. Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science. 2005; 310:490–493. PMID:
16239475.
21. Nabeshima Y, Imura H. alpha-Klotho: a regulator that integrates calcium homeostasis. Am J Nephrol. 2008; 28:455–464. PMID:
18160815.
22. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006; 444:770–774. PMID:
17086194.
Article
23. Yamashita T, Yoshioka M, Itoh N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun. 2000; 277:494–498. PMID:
11032749.
Article
24. Razzaque MS, Lanske B. The emerging role of the fibroblast growth factor-23-klotho axis in renal regulation of phosphate homeostasis. J Endocrinol. 2007; 194:1–10. PMID:
17592015.
Article
25. Liu S, Quarles LD. How fibroblast growth factor 23 works. J Am Soc Nephrol. 2007; 18:1637–1647. PMID:
17494882.
Article
26. Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008; 359:584–592. PMID:
18687639.
Article