Tuberc Respir Dis.  2005 Jan;58(1):31-42. 10.4046/trd.2005.58.1.31.

Oxidative Inactivation of Peroxiredoxin Isoforms by H2O2 in Pulmonary Epithelial, Macrophage, and other Cell Lines with their Subsequent Regeneration

Affiliations
  • 1Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine Suwon, Korea. schwang@ajou.ac.kr
  • 2Department of Medical Informatics, Ajou University School of Medicine Suwon, Korea.

Abstract

BACKGROUND: Peroxiredoxins (Prxs) are a relatively newly recognized, novel family of peroxidases that reduce H2O2 and alkylhydroperoxide into water and alcohol, respectively. There are 6 known isoforms of Prxs present in human cells. Normally, Prxs exist in a head-to-tail homodimeric state in a reduced form. However, in the presence of excess H2O2, it can be oxidized on its catalytically active cysteine site into inactive oxidized forms. This study surveyed the types of the Prx isoforms present in the pulmonary epithelial, macrophage, endothelial, and other cell lines and observed their response to oxidative stress.
METHODS
This study examined the effect of exogenous, excess H2O2 on the Prxs of established cell lines originating from the pulmonary epithelium, macrophages, and other cell lines, which are known to be exposed to high oxygen partial pressures or are believed to be subject to frequent oxidative stress, using non-reducing SDS polyacrylamide electrophoresis (PAGE) and 2 dimensional electrophoresis. RESULT: The addition of excess H2O2 to the culture media of the various cell-lines caused the immediate inactivation of Prxs, as evidenced by their inability to form dimers by a disulfide cross linkage. This was detected as a subsequent shift to its monomeric forms on the non-reducing SDS PAGE. These findings were further confirmed by 2 dimensional electrophoresis and immunoblot analysis by a shift toward a more acidic isoelectric point (pI). However, the subsequent reappearance of the dimeric Prxs with a comparable, corresponding decrease in the monomeric bands was noted on the non-reducing SDS PAGE as early as 30 minutes after the H2O2 treatment suggesting regeneration after oxidation. The regenerated dimers can again be converted to the inactivated form by a repeated H2O2 treatment, indicating that the protein is still catalytically active. The recovery of Prxs to the original dimeric state was not inhibited by a pre-treatment with cycloheximide, nor by a pretreatment with inhibitors of protein synthesis, which suggests that the reappearance of dimers occurs via a regeneration process rather than via the de novo synthesis of the active protein.
CONCLUSION
The cells, in general, appeared to be equipped with an established system for regenerating inactivated Prxs, and this system may function as a molecular "on-off switch" in various oxidative signal transduction processes. The same mechanisms might applicable other proteins associated with signal transduction where the active catalytic site cysteines exist.

Keyword

Pulmonary epithelium; Peroxiredoxins; Cysteine Oxidation; Regeneration

MeSH Terms

Catalytic Domain
Cell Line*
Culture Media
Cycloheximide
Cysteine
Electrophoresis
Electrophoresis, Polyacrylamide Gel
Epithelium
Humans
Isoelectric Point
Macrophages*
Oxidative Stress
Oxygen
Partial Pressure
Peroxidases
Peroxiredoxins*
Protein Isoforms*
Regeneration*
Signal Transduction
Culture Media
Cycloheximide
Cysteine
Oxygen
Peroxidases
Peroxiredoxins
Protein Isoforms
Full Text Links
  • TRD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr