Korean J Physiol Pharmacol.  2015 Jan;19(1):15-20. 10.4196/kjpp.2015.19.1.15.

Extremely Low Frequency Magnetic Field Modulates the Level of Neurotransmitters

Affiliations
  • 1Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 156-756, Korea.
  • 2Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 156-756, Korea. jhjeong3@cau.ac.kr
  • 3Christmas Clinic, Yongin 446-597, Korea.
  • 4Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea.
  • 5Department of Pathology, College of Medicine, Chung-Ang University, Seoul 156-756, Korea. esp@cau.ac.kr

Abstract

This study was aimed to observe that extremely low frequency magnetic field (ELF-MF) may be relevant to changes of major neurotransmitters in rat brain. After the exposure to ELF-MF (60 Hz, 2.0 mT) for 2 or 5 days, we measured the levels of biogenic amines and their metabolites, amino acid neurotransmitters and nitric oxide (NO) in the cortex, striatum, thalamus, cerebellum and hippocampus. The exposure of ELF-MF for 2 or 5 days produced significant differences in norepinephrine and vanillyl mandelic acid in the striatum, thalamus, cerebellum and hippocampus. Significant increases in the levels of serotonin and 5-hydroxyindoleacetic acid were also observed in the striatum, thalamus or hippocampus. ELF-MF significantly increased the concentration of dopamine in the thalamus. ELF-MF tended to increase the levels of amino acid neurotransmitters such as glutamine, glycine and gamma -aminobutyric acid in the striatum and thalamus, whereas it decreased the levels in the cortex, cerebellum and hippocampus. ELF-MF significantly increased NO concentration in the striatum, thalamus and hippocampus. The present study has demonstrated that exposure to ELF-MFs may evoke the changes in the levels of biogenic amines, amino acid and NO in the brain although the extent and property vary with the brain areas. However, the mechanisms remain further to be characterized.

Keyword

Amino acid; Biogenic amines; Extremely low frequency magnetic field; Neurotransmitters; Nitric oxide

MeSH Terms

Animals
Biogenic Amines
Brain
Cerebellum
Dopamine
Glutamine
Glycine
Hippocampus
Magnetic Fields*
Neurotransmitter Agents*
Nitric Oxide
Norepinephrine
Rats
Serotonin
Thalamus
Biogenic Amines
Dopamine
Glutamine
Glycine
Neurotransmitter Agents
Nitric Oxide
Norepinephrine
Serotonin

Reference

1. Cutler TL, Breysse PN, Schiffman A, Kanchanaraksa S, Rooney BC. Comparison of personal exposure meter placement for the determination of office worker ELF magnetic field exposures. Am Ind Hyg Assoc J. 1999; 60:647–650. PMID: 10529996.
Article
2. Breysse P, Lees PS, McDiarmid MA, Curbow B. ELF magnetic field exposures in an office environment. Am J Ind Med. 1994; 25:177–185. PMID: 8147390.
Article
3. Yu S, Shang P. A review of bioeffects of static magnetic field on rodent models. Prog Biophys Mol Biol. 2014; 114:14–24. PMID: 24239500.
Article
4. Markov MS. Magnetic field therapy: a review. Electromagn Biol Med. 2007; 26:1–23. PMID: 17454079.
Article
5. McKay JC, Prato FS, Thomas AW. A literature review: the effects of magnetic field exposure on blood flow and blood vessels in the microvasculature. Bioelectromagnetics. 2007; 28:81–98. PMID: 17004242.
Article
6. Crasson M. 50-60 Hz electric and magnetic field effects on cognitive function in humans: a review. Radiat Prot Dosimetry. 2003; 106:333–340. PMID: 14690276.
Article
7. Sulpizio M, Falone S, Amicarelli F, Marchisio M, Di Giuseppe F, Eleuterio E, Di Ilio C, Angelucci S. Molecular basis underlying the biological effects elicited by extremely low-frequency magnetic field (ELF-MF) on neuroblastoma cells. J Cell Biochem. 2011; 112:3797–3806. PMID: 21826706.
Article
8. Zapponi GA, Marcello I. Recent experimental data on Extremely Low Frequency (ELF) magnetic field carcinogenic risk: open questions. J Exp Clin Cancer Res. 2004; 23:353–364. PMID: 15354424.
9. Wood AW, Armstrong SM, Sait ML, Devine L, Martin MJ. Changes in human plasma melatonin profiles in response to 50 Hz magnetic field exposure. J Pineal Res. 1998; 25:116–127. PMID: 9755033.
Article
10. Davis S, Mirick DK, Chen C, Stanczyk FZ. Effects of 60-Hz magnetic field exposure on nocturnal 6-sulfatoxymelatonin, estrogens, luteinizing hormone, and follicle-stimulating hormone in healthy reproductive-age women: results of a crossover trial. Ann Epidemiol. 2006; 16:622–631. PMID: 16458540.
Article
11. Thun-Battersby S, Mevissen M, Löscher W. Exposure of Sprague-Dawley rats to a 50-Hertz, 100-microTesla magnetic field for 27 weeks facilitates mammary tumorigenesis in the 7,12-dimethylbenz[a]-anthracene model of breast cancer. Cancer Res. 1999; 59:3627–3633. PMID: 10446973.
12. Kitaoka K, Kitamura M, Aoi S, Shimizu N, Yoshizaki K. Chronic exposure to an extremely low-frequency magnetic field induces depression-like behavior and corticosterone secretion without enhancement of the hypothalamic-pituitary-adrenal axis in mice. Bioelectromagnetics. 2013; 34:43–51. PMID: 22753092.
Article
13. Sieroń A, Labus Ł, Nowak P, Cieślar G, Brus H, Durczok A, Zagził T, Kostrzewa RM, Brus R. Alternating extremely low frequency magnetic field increases turnover of dopamine and serotonin in rat frontal cortex. Bioelectromagnetics. 2004; 25:426–430. PMID: 15300728.
Article
14. Kroeker G, Parkinson D, Vriend J, Peeling J. Neurochemical effects of static magnetic field exposure. Surg Neurol. 1996; 45:62–66. PMID: 9190701.
Article
15. Ikehara T, Nishisako H, Minami Y, Ichinose Sasaki H, Shiraishi T, Kitamura M, Shono M, Houchi H, Kawazoe K, Minakuchi K, Yoshizaki K, Kinouchi Y, Miyamoto H. Effects of exposure to a time-varying 1.5 T magnetic field on the neurotransmitter-activated increase in intracellular Ca2+ in relation to actin fiber and mitochondrial functions in bovine adrenal chromaffin cells. Biochim Biophys Acta. 2010; 1800:1221–1230. PMID: 20832450.
16. Corbacio M, Brown S, Dubois S, Goulet D, Prato FS, Thomas AW, Legros A. Human cognitive performance in a 3 mT power-line frequency magnetic field. Bioelectromagnetics. 2011; 32:620–633. PMID: 21544842.
Article
17. Feychting M, Jonsson F, Pedersen NL, Ahlbom A. Occupational magnetic field exposure and neurodegenerative disease. Epidemiology. 2003; 14:413–419. discussion 427-428. PMID: 12843764.
Article
18. Nagamine T, Kajola M, Salmelin R, Shibasaki H, Hari R. Movement-related slow cortical magnetic fields and changes of spontaneous MEG- and EEG-brain rhythms. Electroencephalogr Clin Neurophysiol. 1996; 99:274–286. PMID: 8862117.
Article
19. Cook CM, Saucier DM, Thomas AW, Prato FS. Changes in human EEG alpha activity following exposure to two different pulsed magnetic field sequences. Bioelectromagnetics. 2009; 30:9–20. PMID: 18663700.
Article
20. Kirschstein T, Köhling R. What is the source of the EEG? Clin EEG Neurosci. 2009; 40:146–149. PMID: 19715175.
Article
21. Oishi N, Mima T, Ishii K, Bushara KO, Hiraoka T, Ueki Y, Fukuyama H, Hallett M. Neural correlates of regional EEG power change. Neuroimage. 2007; 36:1301–1312. PMID: 17524671.
Article
22. Stevens JR. The EEG spike: signal of information transmission? Ann Neurol. 1977; 1:309–314. PMID: 214016.
Article
23. Smith M, Pereda AE. Chemical synaptic activity modulates nearby electrical synapses. Proc Natl Acad Sci USA. 2003; 100:4849–4854. PMID: 12668761.
Article
24. Tracey WR, Nakane M, Kuk J, Budzik G, Klinghofer V, Harris R, Carter G. The nitric oxide synthase inhibitor, L-NG-monomethylarginine, reduces carrageenan-induced pleurisy in the rat. J Pharmacol Exp Ther. 1995; 273:1295–1299. PMID: 7540689.
25. Karasek M, Lerchl A. Melatonin and magnetic fields. Neuro Endocrinol Lett. 2002; 23(Suppl 1):84–87. PMID: 12019358.
26. Selmaoui B, Touitou Y. Sinusoidal 50-Hz magnetic fields depress rat pineal NAT activity and serum melatonin. Role of duration and intensity of exposure. Life Sci. 1995; 57:1351–1358. PMID: 7564882.
Article
27. Cagnacci A, Elliott JA, Yen SS. Melatonin: a major regulator of the circadian rhythm of core temperature in humans. J Clin Endocrinol Metab. 1992; 75:447–452. PMID: 1639946.
Article
28. Palazidou E, Franey C, Arendt J, Stahl S, Checkley S. Evidence for a functional role of alpha-1 adrenoceptors in the regulation of melatonin secretion in man. Psychoneuroendocrinology. 1989; 14:131–135. PMID: 2543998.
Article
29. Del Seppia C, Mezzasalma L, Choleris E, Luschi P, Ghione S. Effects of magnetic field exposure on open field behaviour and nociceptive responses in mice. Behav Brain Res. 2003; 144:1–9. PMID: 12946589.
Article
30. Rauš S, Selaković V, Radenovi L, Prolić Z, Janać B. Extremely low frequency magnetic field induced changes in motor behaviour of gerbils submitted to global cerebral ischemia. Behav Brain Res. 2012; 228:241–246. PMID: 22119248.
Article
31. Jadidi M, Firoozabadi SM, Rashidy-Pour A, Sajadi AA, Sadeghi H, Taherian AA. Acute exposure to a 50 Hz magnetic field impairs consolidation of spatial memory in rats. Neurobiol Learn Mem. 2007; 88:387–392. PMID: 17768075.
32. Massot O, Grimaldi B, Bailly JM, Kochanek M, Deschamps F, Lambrozo J, Fillion G. Magnetic field desensitizes 5-HT(1B) receptor in brain: pharmacological and functional studies. Brain Res. 2000; 858:143–150. PMID: 10700607.
Article
33. Esler M, Jennings G, Lambert G, Meredith I, Horne M, Eisenhofer G. Overflow of catecholamine neurotransmitters to the circulation: source, fate, and functions. Physiol Rev. 1990; 70:963–985. PMID: 1977182.
Article
34. Owen F, Crow TJ. Neurotransmitters and psychosis. Br Med Bull. 1987; 43:651–671. PMID: 2892562.
Article
35. Fagg GE, Foster AC. Amino acid neurotransmitters and their pathways in the mammalian central nervous system. Neuroscience. 1983; 9:701–719. PMID: 6137788.
Article
36. Hanania T, Johnson KM. Regulation of neurotransmitter release by endogenous nitric oxide in striatal slices. Eur J Pharmacol. 1998; 359:111–117. PMID: 9832380.
Article
37. Hirsch DB, Steiner JP, Dawson TM, Mammen A, Hayek E, Snyder SH. Neurotransmitter release regulated by nitric oxide in PC-12 cells and brain synaptosomes. Curr Biol. 1993; 3:749–754. PMID: 15335838.
Article
38. Lorrain DS, Hull EM. Nitric oxide increases dopamine and serotonin release in the medial preoptic area. Neuroreport. 1993; 5:87–89. PMID: 8280866.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr