Korean J Physiol Pharmacol.  2010 Oct;14(5):345-352. 10.4196/kjpp.2010.14.5.345.

Effects of Erythropoietin on Memory Deficits and Brain Oxidative Stress in the Mouse Models of Dementia

Affiliations
  • 1Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala (Punjab), PIN-147002, India. nirmal_puru@rediffmail.com

Abstract

The present study was undertaken to explore the potential of erythropoietin in memory deficits of mice. Memory impairment was produced by scopolamine (0.5 mg/kg, i.p.) and intracerebroventricular streptozotocin (i.c.v STZ, 3 mg/kg, 10 microliter, 1st and 3rd day) in separate groups of animals. Morris water-maze test was employed to assess learning and memory. The levels of brain thio-barbituric acid reactive species (TBARS) and reduced glutathione (GSH) were estimated to assess degree of oxidative stress. Brain acetylcholinesterase enzyme (AChE) activity was also measured. Scopolamine/streptozotocin administration induced significant impairment of learning and memory in mice as indicated by marked decrease in Morris water-maze performance. Scopolamine/streptozotocin administration also produced a significant enhancement of brain AChE activity and brain oxidative stress (an increase in TBARS and a decrease in GSH) levels. Treatment of erythropoietin (500 and 1,000 IU/Kg i.p.) significantly reversed scopolamine- as well as streptozotocin-induced learning and memory deficits along with attenuation of those-induced rise in brain AChE activity and brain oxidative stress levels. It may be concluded that erythropoietin exerts a beneficial effect in memory deficits of mice possibly through its multiple actions including potential anti-oxidative effect.

Keyword

Erythropoietin; Memory; Scopolamine; Streptozotocin; Morris water-maze

MeSH Terms

Acetylcholinesterase
Animals
Brain
Dementia
Erythropoietin
Glutathione
Learning
Memory
Memory Disorders
Mice
Oxidative Stress
Scopolamine Hydrobromide
Streptozocin
Thiobarbituric Acid Reactive Substances
Acetylcholinesterase
Erythropoietin
Glutathione
Scopolamine Hydrobromide
Streptozocin
Thiobarbituric Acid Reactive Substances

Figure

  • Fig. 1. Effect of erythropoietin on scopolamine and streptozotocin induced memory impairments using Morris water-maze. ACSF-C: artificial cerebrospinal fluid-control; SCO-C: scopolamine-control; EPO-L and H: erythropoietin (low and high); STZ: streptozotocin. Each group (n=7) represents mean±standard errors of means Two-way ANOVA followed by Bonferonni's post hoc test. F (3, 24)=6.455, p<0.0001 for evaluating the difference in time spent in various quadrants; F (9, 60)=26.231, p<0.001 for evaluating the effect of treatment on difference in time spent in target quadrant. ap<0.05 Vs time spent in other quadrants in control group, bp< 0.05 Vs time spent in Target Quadrant (TSTQ) of control, cp<0.05 Vs TSTQ of scopolamine group, dp<0.05 Vs TSTQ of ACSF group, ep<0.05 Vs TSTQ of STZ group.

  • Fig. 2. Effect of erythropoietin on scopolamine/streptozotocin-induced changes in brain AChE activity. ACSF-C: artificial cerebrospinal fluid-control; SCO-C: scopolamine-control; EPO-L and H: erythropoietin (low and high); STZ: streptozotocin. Each group (n=7) represents mean±standard errors of means. One-way ANOVA followed by Tukey's multiple range test; F (9, 60)=15.851, p<0.001. ap<0.05 Vs control group, bp<0.05 Vs scopolamine, cp<0.05 Vs ACSF control, dp<0.05 Vs STZ.

  • Fig. 3. Effect of erythropoietin on scopolamine/streptozotocin-induced changes in brain thio-barbituric acid reactive species (TBARS) levels. ACSF-C: artificial cerebrospinal fluid-control; SCO-C: scopolamine-control; EPO-L and H: erythropoietin (low and high); STZ: streptozotocin. Each group (n=7) represents mean±standard errors of means. One-way ANOVA followed by Tukey's multiple range test; F (9, 60)=10.721, p<0.001. ap<0.05 Vs control group, bp<0.05 Vs scopolamine, cp<0.05 Vs ACSF control, dp<0.05 Vs STZ.

  • Fig. 4. Effect of erythropoietin on scopolamine/streptozotocin-induced changes in brain reduced glutathione (GSH) levels. ACSF-C: artificial cerebrospinal fluid-control; SCO-C: scopolamine-control; EPO-L and H: erythropoietin (low and high); STZ: streptozotocin. Each group (n=7) represents mean±standard errors of means. One-way ANOVA followed by Tukey's multiple range test; F (9, 60)=16.522, p<0.001. ap<0.05 Vs control group, bp<0.05 Vs scopolamine, cp<0.05 Vs ACSF control, dp<0.05 Vs STZ.


Cited by  3 articles

Phellodendron amurense and Its Major Alkaloid Compound, Berberine Ameliorates Scopolamine-Induced Neuronal Impairment and Memory Dysfunction in Rats
Bombi Lee, Bongjun Sur, Insop Shim, Hyejung Lee, Dae-Hyun Hahm
Korean J Physiol Pharmacol. 2012;16(2):79-89.    doi: 10.4196/kjpp.2012.16.2.79.

Ameliorative Effect of a Selective Endothelin ETA Receptor Antagonist in Rat Model of L-Methionine-induced Vascular Dementia
Gautamjeet S Mangat, Amteshwar S Jaggi, Nirmal Singh
Korean J Physiol Pharmacol. 2014;18(3):201-209.    doi: 10.4196/kjpp.2014.18.3.201.

Effects of cinnamic acid on memory deficits and brain oxidative stress in streptozotocin-induced diabetic mice
Ali Asghar Hemmati, Soheila Alboghobeish, Akram Ahangarpour
Korean J Physiol Pharmacol. 2018;22(3):257-267.    doi: 10.4196/kjpp.2018.22.3.257.


Reference

References

Adamcio B., Sargin D., Stradomska A., Medrihan L., Gertler C., Theis F., Zhang M., Müller M., Hassouna I., Hannke K., Sperling S., Radyushkin K., El-Kordi A., Schulze L., Ronnenberg A., Wolf F., Brose N., Rhee JS., Zhang W., Ehrenreich H. Erythropoietin enhances hippocampal long-term potentiation and memory. BMC Biol. 2008. 6:37.
Article
Agrawal R., Tyagi E., Shukla R., Nath C. Effect of insulin and melatonin on acetylcholinestrase activity in the brain of amnesic mice. Behav Brain Res. 2008. 189:381–386.
Bartus RT., Dean RT., Beer B., Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982. 217:408–417.
Article
Becker R. Therapy of cognitive deficit of Alzheimer's disease: the cholinergic system in cholinergic basis for Alzheimer therapy. Becker R, Giacobini E, eds. Boston: Birkhauser. 1991. pp.22.
Beutler RG., Duron O., Kelly B. Reduced glutathion estimation. J Lab Clinical Med. 1963. 61:82.
Blokland A. Acetylcholine: a neurotransmitter for learning and memory? Brain Res Rev. 1995. 21:285–300.
Article
Braak H., Del Tredici K., Schultz C., Braak E. Vulnerability of select neuronal types of Alzheimer's disease. Ann N Y Acad Sci USA. 2000. 924:53–61.
Brines ML., Ghezzi P., Keenan S., Agnello D., de Lanerolle NC., Cerami C., Itri LM., Cerami A. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci USA. 2000. 97:10526–10531.
Article
Campana WM., Misasi R., O'Brien JS. Identification of a neurotrophic sequence in erythropoietin. Int J Mol Med. 1998. 1:235–241.
Article
Chandel NS., Maltepe E., Goldwasser E., Mathieu CE., Simon MC., Schumacke PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA. 1998. 95:11715–11720.
Article
Coyle JT., Price DL., Delong MR. Alzheimer's disease: a disorder of cortical cholinergic innervations. Science. 1983. 219:1184–1190.
Dame C., Bratmann P., Wolber EM., Fahnenstich H., Hofman D., Fandrey J. Erythropoietin gene expression in different areas of the developing human central nervous system. Brain Res Dev Brain Res. 2000. 125:69–74.
Article
Deutsch JA., Rocklin KW. Amnesia induced by scopolamine and its temporal variations. Nature. 1967. 216:89–90.
Article
Deutsch JA. The cholinergic synapse and the site of memory. Science. 1971. 174:788–794.
Article
El-Kordi A., Radyushkin K., Ehrenreich H. Erythropoietin improves operant conditioning and stability of cognitive performance in mice. BMC Biol. 2009. 7:37.
Article
Ellman GL., Courtney DK., Andres V., Feathstone RM. A new and rapid colorimetric determination of acetylcholinestrase activity. Biochem Pharmacol. 1961. 7:88–95.
El-Sherbiny DA., Khalifa AE., Attia AS., Eldenshary ED. Hypericum perforatum extract demonstrates anti oxidant properties against elevated rat brain oxidative status induced by amnestic dose of scopolamine. Pharmacol Biochem Behav. 2003. 76:525–533.
Feillet-Coudray C., Rock E., Coudray C., Grzelkowska K., Azais-Braesco V., Dardevet D. Lipid peroxidation and anti oxidant status in experimental diabetes. Clin Chim Acta. 1999. 284:31–43.
Genc S., Koroglu TF., Genc K. Erythropoietin and the nervous system. Brain Res. 2004. 1000:19–31.
Article
Granic I., Dolga AM., Nijholt IM., Van Dijk G., Eisel UL. Inflammation and NF-kappaB in Alzheimer's disease and diabetes. J Alzheimers Dis. 2009. 16:809–821.
Grünblatt E., Salkovic-Petrisic M., Osmanovic J., Riederer P., Hoyer S. Brain insulin system dysfunction in streptozotocin intrace-rebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem. 2007. 101:757–770.
Article
Haley TJ., McCormick WG. Pharmacological effects produced by intracerebral injection of drugs in the conscious mice. Br J Pharmacol Chemother. 1957. 12:12–15.
Hoyer S. The aging brain. Changes in the neuronal insulin / insulin receptor signal transduction cascade trigger late onset sporadic Alzheimer's disease (SAD). A mini review. J Neural Transm. 2000a. 109:991–1002.
Hoyer S. The brain insulin signal transduction system and sporadic (type II) Alzheimer's disease: an update. J Neural Transm. 2000b. 109:341–360.
Juul S. Erythropoietin in the central nervous system, and its use to prevent hypoxic-ischemic brain damage. Acta Paediatr Suppl. 2002. 91:36–42.
Article
Juul SE., Yachnis AT., Rojiani AM., Christensen RD. Immunohistochemical localization of erythropoietin and its receptor in the developing human brain. Pediatr Dev Pathol. 1999. 2:148–158.
Article
Kaur B., Singh N., Jaggi AS. Exploring mechanism of pioglitazone-induced memory restorative effect in experimental dementia. Fundam Clin Pharmacol. 2009. 23:557–566.
Article
Khalifa AE. Pro oxidant activity of Zuclopenthixol in vivo: Differential effect of the drug on brain oxidative status of scopolamine treated rats. Hum Exp Toxicol. 2004. 23:439–445.
Konishi Y., Chui DH., Hirose H., Kunishita T. Trophic effect of erythropoietin and other hematopoietic factors on central cholinergic neurons in vitro and in vivo. Brain Res. 1993. 609:29–35.
Article
Lannert H., Hoyer S. Intracerebroventricular administration of Streptozotocin causes long term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci. 1998. 112:1199–1208.
Lewczuk P., Hasselblatt M., Kamrowski-Kruck H., Heyer A., Unzicker C., Siren AL. Survival of hippocampal neurons in culture upon hypoxia: effect of erythropoietin. Neuroreport. 2000. 11:3485–3488.
Liu X., Xie W., Liu P., Duan M., Jia Z., Li W. Mechanism of the cardioprotection of rhEPO pretreatment on suppressing the inflammatory response in ischemia-reperfusion. Life Sci. 2006. 78:2255–2264.
Article
Lowry OH., Rosenbrough NJ., Farr AL., Randall RJ. Protein measurement with folin phenol reagent. J Biol Chem. 1951. 193:265–275.
Marti HH., Wenger RH., Rivas LA., Straumann U., Dicicaylioglu M., Henn V. Erythropoietin gene expression in human, monkey and murine brain. Eur J Neurosci. 1996. 8:666–676.
Article
Masuda S., Okano M., Yamagishi K., Nagao M., Ueda M., Sasaki R. A novel site of erythropoietin production: oxygen-dependent production in cultured rat astrocytes. J Biol Chem. 1994. 269:19488–19493.
Article
Mayer G., Nitsch R., Hoyer S. Effects of changes in peripheral and cerebral glucose metabolism on locomotor activity, learning and memory in adult male rats. Brain Res. 1990. 532:95–100.
Article
Morishita E., Masuda S., Nagao M., Yasuda Y., Sasaki R. Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience. 1997. 76:105–116.
Article
Morris RGM. Developments of a water maze producer for studying spatial learning in the rats. J Neurosci Meth. 1984. 11:47–60.
Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979. 95:351–358.
Article
Packard MG., Teather LA., Bazan NG. Effect of intra-striated injections of platelet-activating factor and PAF antagonist BN 52021 on memory. Neurobiol Learn Mem. 1996. 66:176–182.
Parle M., Singh N. Animal models of testing memory. Asia pacific J Pharmacol. 2004. 16:101–120.
Parle M., Singh N. Reversal of memory deficits by atorvastatin and simvastatin in rats. Yakugaku Zasshi. 2007. 127:1125–1137.
Article
Reagan LP., Magariños AM., Yee DK., Swzeda LI., Van Bueren A., McCall AL., McEwen BS. Oxidative stress and HNE conjugation of GLUT3 are increased in the hippocampus of diabetic rats subjected to stress. Brain Res. 2000. 862:292–300.
Article
Rui T., Feng Q., Lie M., Peng T., Zhang J., Xu M. Erythropoietin prevents the acute myocardial inflammatory response induced by ischemia/reperfusion via induction of AP-1. Cardiovasc Res. 2005. 65:719–727.
Article
Sakurada T., Sakurada S., Katsuyama S., Sakurada C., No KT., Terenius L. Noceceptin (1–7) antagonizes noceceptin induced hyperalgesia in mice. Br J Pharmacol. 1999. 128:941–944.
Salkovic-Petrisic M., Tribl F., Schmidt M., Hoyer S., Riederer P. Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. J Neurochem. 2006. 96:1005–1015.
Article
Salminen A., Ojala J., Kauppinen A., Kaarniranta K., Suuronen T. Inflammation in Alzheimer's disease: amyloid-beta oligomers trigger innate immunity defence via pattern recognition receptors. Prog Neurobiol. 2009. 87:181–194.
Sharma B., Singh N., Singh M., Jaggi AS. Exploitation of HIV protease inhibitor indinavir as a memory restorative agent in experimental dementia. Pharmacol Biochem Behav. 2008b. 89:535–545.
Article
Sharma B., Singh N., Singh M. Modulation of celecoxib and Streptozotocin induced experimental dementia of Alzheimer's disease type by pitavastatin and donepezil. J Psychopharmacol. 2008a. 22:162–171.
Sharma M., Gupta YK. Effect of chronic treatment of melatonin on learning, memory and oxidative deficiencies induced by intracerebroventricular Streptozotocin in rats. Pharmacol Biochem Behav. 2001. 70:325–331.
Article
Shoham S., Bejar C., Kovalev E., Weinstock M. Intracerebroventricular injection of streptozotocin causes neurotoxicity to myelin that contributesto spatial memory deficits in rats. Exp Neurol. 2003. 184:1043–1052.
Signore AP., Weng Z., Hastings T., Van Laar AD., Liang Q., Lee YJ. Erythropoietin protects against 6-hydroxydopamine induced dopaminergic cell death. J Neurochem. 2006. 96:428–443.
Siren AL., Enrenreich H. Erythropoietin a novel concept for neuroprotection. Eur Arch Psychiatry Clin Neurosci. 2001. 251:179–184.
Siren AL., Fratelli M., Brines M., Goemans C., Casagrande S., Lewczuk P., Keenan S., Gleiter C., Pasquali C., Capobianco A., Mennini T., Heumann R., Cerami A., Ehrenreich H., Ghezzi P. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and in metabolically stressed neurons. Proc Natl Acad Sci USA. 2001. 98:4044–4049.
Siren AL., Knerlich F., Poser W., Gleiter CH., Bruck W., Ehrenreich H. Erythropoietin and erythropoietin receptor in human ischemic/ hypoxic brain. Acta Neuropathol. 2001. 101:271–276.
Smith KJ., Kapoor R., Felts PA. Demyelination: the role of reactive oxygen and nitrogen species. Brain Patho. 1999. 9:69–92.
Article
Tabira T., Konishi Y., Gallyas F Jr. Neurotrophic effect of hematopoietic cytokines on cholinergic and other neurons in vitro. Int J Dev Neurosci. 1995. 13:241–252.
Torre DLJ., Aliev G., Perry G. Drug therapy in Alzheimer's disease. N Engl J Med. 2004. 351:1911–1913.
Viviani B., Bartesaghi S., Corsini E., Villa P., Ghezzi P., Garau A., Galli CL., Marinovich M. Erythropoietin protects primary hippocampal neurons increasing the expression of brain-derived neurotrophic factor. J Neurochem. 2005. 93:412–421.
Article
Voss G., Sachsse K. Red cell and plasma cholinesterase activities in microsamples of human and animal blood determined simultaneously by a modified acetylcholine/DTNB procedure. Toxicol Appl Pharmacol. 1970. 16:764–772.
Wang ZY., Shen LJ., Tu L., Hu DN., Liu GY., Zhou ZL., Lin Y., Chen LH., Qu J. Erythropoietin protects retinal pigment epithelial cells from oxidative damage. Free Radic Biol Med. 2009. 46:1032–1041.
Article
Xue YQ., Zhao LR., Guo WP., Duan WM. Intrastriatal administration of erythropoietin protects dopaminergic neurons and improves neurobehavioral outcome in a rat model of Parkinson's disease. Neuroscience. 2007. 146:1245–1258.
Article
Yamamoto M., Koshimura K., Kawaquchi M., Sohmiya M., Murakami Y., Kato Y. Stimulating effect of Erythropoietin on the release of dopamine and acetylcholine from the rat brain slice. Neurosci Lett. 2000. 292:131–133.
Article
Yamazaki M., Matsuoka N., Maeda N., Kuratani K., Ohkubo Y., Yamaguchi I. FR121196: a potential anti dementia drug ameliorates the impaired memory of rats in Morris water maze. J Pharmacol Exp Ther. 1995. 272:256–263.
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr