J Bacteriol Virol.  2006 Jun;36(2):73-78. 10.4167/jbv.2006.36.2.73.

Alteration in gyrA and parC Gene Associated with Fluoroquinolone Resistance of Enterococcus spp. Isolated from Feces of Chicken

Affiliations
  • 1Daegu Metropolitan City Research Institute of Health & Environment, Daegu, Korea.
  • 2College of Veterinary Medicine, Kyungpook National University, Daegu, Korea. youngju@mail.knu.ac.kr
  • 3National Veterinary Research and Quarantine Service, Anyang, Korea.

Abstract

The purpose of this study was to investigate the fluoroquinolone resistance frequency of Enterococcus spp. from normal chicken feces and to analyse mutations of the gyrA and parC gene associated with fluoroquinolone resistance. Among 52 Enterococcus faecalis and 25 E. faecium isolates, 23 (44.2%) E. faecalis and 7 (28.0%) E. faecium were resistant to ciprofloxacin (CIP) by disc diffusion method. Genetic exchange in gyrA and parC gene among 2 CIP intermediate isolates and 15 CIP resistant isolates were found in the amino acid codon of Ser-83 and Asp-87, and Ser-80 and Glu-84, respectively. These mutants contained a change from Ser to Phe, Val, Tyr, Ile, Thr or Pro at codon 83 and from Glu to Gly or Leu at codon 87 in gyrA gene, and a change from Ser to Ile or Thr at codon 80 and from Glu to Asp or Lys at codon 84 in parC gene. The isolates with mutation in gyrA regardless of a mutation in parC showed high resistance (MIC > or =32 microgram/ml) to CIP, enrofloxacin, norfloxacin and ofloxacin. These results suggested that gyrA gene is the primary target for 4 fluoroquinolones resistance in Enterococcus spp.

Keyword

Enterococcus; fluoroquinolone; gyrA; parC

MeSH Terms

Chickens*
Ciprofloxacin
Codon
Diffusion
Enterococcus faecalis
Enterococcus*
Feces*
Fluoroquinolones
Norfloxacin
Ofloxacin
Viperidae
Ciprofloxacin
Codon
Fluoroquinolones
Norfloxacin
Ofloxacin

Reference

References

1). 송시욱, 정석찬, 김성일, 정명은, 김계희, 이지연, 임숙 경, 이영주, 조남인, 박종명, 박용호. 2003년도 국내 도 축장에서 분리한 세균의 항생제 감수성 조사 1. 도축장 의 식육으로부터 분리한 E. coli의 항생제 감수성. 한국 수의공중보건학회지. 28:215–221. 2004.
2). 이영주, 김애란, 정석찬, 송시욱, 김재홍. 닭 분변유래 E. coli 및 Salmonella spp.의 항생제 내성패턴. 대한수의 학회지. 45:75–83. 2005.
3). Bazile-Pham-Khac S, Truong QC, Lafont JP, Gutmann L, Zhou XY, Osman M, Moreau NJ. Resistance to fluoroquinolones in Escherichia coli isolated from poultry. Antimicrob Agents Chemother. 40:1504–1507. 1996.
4). Chaslus-Dancla E, Martel JL, Carlier C, Lafont JP, Courvalin P. Emergence of aminoglycoside 3-N-acetyltransferase IV in Escherichia coli and Salmonella typhimurium isolated from animals in France. Antimicrob Agents Chemother. 29:239–243. 1986.
5). Cheng S, McCleskey FK, Gress MJ, Petroziello JM, Liu R, Namdari H, Beninga K, Salmen A, DelVecchio VG. A PCR assay for identification of Enterococcus faecium. J Clin Microbiol. 35:1248–1250. 1997.
6). del Mar Lleo M, Tafi MC, Signoretto C, Dal Cero C, Canepari P. Competitive polymerase chain reaction for quantification of nonculturable Enterococcus faecalis cells in lake water. FEMS Microbiol Ecol. 30:345–353. 1999.
7). el Amin NA, Jalal S, Wretlind B. Alterations in gyrA and parC associated with fluoroquinolone resistance in Enterococcus faecium. Antimicrob Agents Chemother. 43:947–949. 1999.
8). Endtz HP, Ruijs GJ, van Klingeren B, Jansen WH, van der Reyden T, Mouton RP. Quinolone resistance in Campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J Antimcirob Chemother. 27:199–208. 1991.
Article
9). Ferrero L, Cameron B, Crouzet J. Analysis of gyrA and grlA mutations in stepwise-selected ciprofloxacin-resistant mutants of Staphylococcus aureus. Antimicrob Agents Chemother. 39:1554–1558. 1995.
10). Ferrero L, Cameron B, Manse B, Lagneaux D, Crouzet J, Famechon A, Blanche F. Cloning and primary structure of Staphylococcus aureus DNA topoisomerase IV: a primary target of fluoroquinolones. Mol Microbiol. 13:641–653. 1994.
11). Garau J, Xercavins M, Rodriguez-Carballeira M, Gomez-Vera JR, Coll I, Vidal D, Llovet T, Ruiz-Bremon A. Emergence and dissemination of quinolone-resistant Escherichia coli in the community. Antimicrob Agents Chemother. 43:2736–2741. 1999.
12). Gellert M, Mizuuchi K, O'Dea MH, Nash HA. DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci USA. 73:3872–3876. 1976.
Article
13). Hooper DC, Wolfson JS. Fluoroquinolone antimicrobial agents. N Engl J Med. 324:384–394. 1991.
Article
14). Kanematsu E, Deguchi T, Yasuda M, Kawamura T, Nishino Y, Kawada Y. Alterations in the gyrA subunit of DNA gyrase and the parC subunit of DNA topoisomerase IV associated with quinolone resistance in Enterococcus faecalis. Antimicrob Agents Chemother. 42:433–435. 1998.
15). Kato J, Nishimura Y, Imamura R, Niki H, Hiraga S, Suzuki H. New topoisomerase essential for chromosome segregation in Escherichia coli. Cell. 63:393–404. 1990.
16). Korten V, Huang WM, Murray BE. Analysis by PCR and direct DNA sequencing of gyrA mutations associated with fluoroquinolone resistance in Enterococcus faecalis. Antimicrob Agents Chemother. 38:2091–2094. 1994.
17). Morrison AJ Jr, Wenzel RP. Nosocomial urinary tract infections due to Enterococcus Ten years experience at a university hospital. Arch Intern Med. 146:1549–1551. 1986.
Article
18). Murray BE. The life and times of the Enterococcus. Clin Microbiol Rev. 3:46–65. 1990.
Article
19). Na EY, Trucksis M, Hopper DC. Quinolone resistance mutations in topoisomerase IV: relationship to the flqA locus and genetic evidence that topoisomerase IV is the primary target and DNA gyrase is the secondary target of fluoroquinolones in Staphylococcus aureus. Antimicrob Agents Chemother. 40:1881–1888. 1996.
20). Onodera Y, Okuda J, Tanaka M, Sato K. Inhibitory activities of quinolones against DNA gyrase and topoisomerase IV of Enterococcus faecalis. Antimicrob Agents Chemother. 46:1800–1804. 2002.
21). Pan XS, Ambler J, Mehtar S, Fisher LM. Involvement of topoisomerase IV and DNA gyrase as ciprofloxacin targets in Streptococcus pneumoniase. Antimicrob Agents Chemother. 40:2321–2326. 1994.
22). Pan XS, Fisher LM. Targeting of DNA gyrase in Streptococcus pneumoniae by sparfloxacin: selective targeting of gyrase or topoisomerase IV by quinolones. Antimicrob Agents Chemother. 41:471–474. 1997.
23). Pitout JD, Thomson KS, Hanson ND, Ehrhardt AF, Coudron P, Sanders CC. Plasmid-mediated resistance to expanded-spectrum cephalosporins among Enterobacter aerogenes strains. Antimicrob Agents Chemother. 42:596–600. 1998.
24). Sylvain B, Fluit AC, Wagner U, Heisig P, Milatovic D, Verhoef J, Scheuring S, Kohrer K, Schmitz FJ. Association of alteration in parC and gyrA proteins with resistance of clinical isolates of Enterococcus faecium to nine different fluoroquinolones. Antimicrob Agents Chemother. 43:2513–2516. 1999.
25). Tankovic J, Mahjoubi F, Courvalin P, Duval J, Leclercq R. Development of fluoroquinolone resistance in Enterococcus faecalis and role of mutations in the DNA gyrase gyrA gene. Antimicrob Agents Chemother. 40:2558–2561. 1996.
26). Tankovic J, Perichon B, Duval J, Courvalin P. Contribution of mutations in gyrA and parC genes to fluoroquinolone resistance of mutants of Streptococcus pneumoniae obtained in vivo and in vitro. Antimicrob Agents Chemother. 40:2505–2510. 1996.
Full Text Links
  • JBV
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr