Lab Anim Res.  2011 Jun;27(2):85-90. 10.5625/lar.2011.27.2.85.

Epigallocatechin-3-gallate Regulates Inducible Nitric Oxide Synthase Expression in Human Umbilical Vein Endothelial Cells

Affiliations
  • 1Department of Pharmacology, College of Medicine, Chungbuk University, Cheongju, Republic of Korea. hyahn@chungbuk.ac.kr

Abstract

Inducible nitric oxide synthase (iNOS) is a main enzyme producing nitric oxide during inflammation and thus contributes to the initiation and development of inflammatory cardiovascular diseases such as atherosclerosis. Epigallocatechin-3-gallate (EGCG), the major catechin derived from green tea, has multiple beneficial effects for treating cardiovascular disease, but the effect of EGCG on the expression of vascular iNOS remains unknown. In this study, we investigated (i) whether EGCG inhibits the expression of vascular iNOS induced by angiotensin II in human umbilical vein endothelial cells and, if it does inhibit, (ii) mechanisms underlying the inhibition. Angiotensin II increased expression levels of vascular iNOS; EGCG counteracted this effect. EGCG increased the production of reactive oxygen species. Moreover, EGCG did not affect the production of reactive oxygen species induced by angiotensin II. These data suggest a novel mechanism whereby EGCG provides direct vascular benefits for treating inflammatory cardiovascular diseases.

Keyword

Epigallocatechin-3-gallate (EGCG); inducible nitric oxide synthase (iNOS); angiotensin II; reactive oxygen species (ROS); human umbilical vein endothelial cells (HUVECs)

MeSH Terms

Angiotensin II
Atherosclerosis
Cardiovascular Diseases
Catechin
Human Umbilical Vein Endothelial Cells
Humans
Inflammation
Nitric Oxide
Nitric Oxide Synthase Type II
Reactive Oxygen Species
Tea
Angiotensin II
Catechin
Nitric Oxide
Nitric Oxide Synthase Type II
Reactive Oxygen Species
Tea

Figure

  • Figure 1 Effect of angiotensin II (Ang II) treatment (100 nM, 0-24 h) on the expression levels of inducible nitric oxide synthase (iNOS) in human umbilical vein endothelial cells. Summary data are shown as the mean±SEM.

  • Figure 2 Effect of epigallocatechin-3-gallate (EGCG) on inducible nitric oxide synthase (iNOS) expression in human umbilical vein endothelial cells treated with angiotensin II (Ang II, 100 nM) for 24 h, 30 min after treatment with EGCG (10, 30 or 50 µM).

  • Figure 3 Effects of epigallocatechin-3-gallate (EGCG) on reactive oxygen species production in resting (A) and angiotensin II (Ang II, 100 nM)-stimulated human umbilical vein endothelial cells for 24 h. Bars represent the mean±SEM. *P<0.05 by Tukey's multiple comparison test.


Reference

1. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001; 357:593–615. PMID: 11463332.
Article
2. Stuehr DJ, Marletta MA. Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection, lymphokines, or interferon-γ. J Immunol. 1987; 139:518–525. PMID: 3110273.
3. Liu VW, Huang PL. Cardiovascular roles of nitric oxide: A review of insights from nitric oxide synthase gene disrupted mice. Cardiovasc Res. 2008; 77:19–29. PMID: 17658499.
4. Kuhlencordt PJ, Chen J, Han F, Astern J, Huang PL. Genetic deficiency of inducible nitric oxide synthase reduces atherosclerosis and lowers plasma lipid peroxides in apolipoprotein E-knockout mice. Circulation. 2001; 103:3099–3104. PMID: 11425775.
Article
5. Sánchez-Lemus E, Benicky J, Pavel J, Larrayoz IM, Zhou J, Baliova M, Nishioku T, Saavedra JM. Angiotensin II AT1 blockade reduces the lipopolysaccharide-induced innate immune response in rat spleen. Am J Physiol Regul Integr Comp Physiol. 2009; 296(5):R1376–R1384. PMID: 19225144.
Article
6. Lee HY, Noh HJ, Gang JG, Xu ZG, Jeong HJ, Kang SW, Choi KH, Han DS. Inducible nitric oxide synthase (iNOS) expression is increased in lipopolysaccharide (LPS)-stimulated diabetic rat glomeruli: effect of ACE inhibitor and angiotensin II receptor blocker. Yonsei Med J. 2002; 43(2):183–192. PMID: 11971212.
Article
7. Seko Y. Effect of the angiotensin II receptor blocker olmesartan on the development of murine acute myocarditis caused by coxsackievirus B3. Clin Sci (Lond). 2006; 110(3):379–386. PMID: 16336207.
Article
8. Silva KC, Rosales MA, de Faria JB, de Faria JM. Reduction of inducible nitric oxide synthase via angiotensin receptor receptor blocker prevents the oxidative retinal damage in diabetic hypertensive rats. Curr Eye Res. 2010; 35(6):519–528. PMID: 20465447.
9. Middleton E Jr, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol Rev. 2000; 52:673–751. PMID: 11121513.
10. Sasazuki S, Kodama H, Yoshimasu K, Liu Y, Washio M, Tanaka K, Tokunaga S, Kono S, Arai H, Doi Y, Kawano T, Nakagaki O, Takada K, Koyanagi S, Hiyamuta K, Nii T, Shirai K, Ideishi M, Arakawa K, Mohri M, Takeshita A. Relation between green tea consumption and the severity of coronary atherosclerosis among Japanese men and women. Ann Epidemiol. 2000; 10:401–408. PMID: 10964006.
Article
11. Ahmed S, Rahman A, Hasnain A, Lalonde M, Goldberg VM, Haqqi TM. Green tea polyphenol epigallocatechin-3-gallate inhibits the IL-1β-induced activity and expression of cyclooxygenase-2 and nitric oxide synthase-2 in human chondrocytes. Free Radic Biol Med. 2002; 33(8):1097–1105. PMID: 12374621.
Article
12. Han MK. Epigallocatechin gallate, a constituent of green tea, suppresses cytokine-induced pancreatic β-cell damage. Exp Mol Med. 2003; 35(2):136–139. PMID: 12754418.
Article
13. Song EK, Hur H, Han MK. Epigallocatechin gallate prevents autoimmune diabetes induced by multiple low doses of streptozotocin in mice. Arch Pharm Res. 2003; 26(7):559–563. PMID: 12934649.
Article
14. Song XZ, Bi ZG, Xu AE. Green tea polyphenol epigallocatechin-3-gallate inhibits the expression of nitric oxide synthase and generation of nitric oxide induced by ultraviolet B in HaCaT cells. Chin Med J. 2006; 119(4):282–287. PMID: 16537022.
Article
15. Heo SK, Yun HJ, Noh EK, Park WH, Park SD. LPS induces inflammatory responses in human aortic vascular smooth muscle cells via Toll-like receptor 4 expression and nitric oxide production. Immunol Lett. 2008; 120(1-2):57–64. PMID: 18675302.
Article
16. Wei XQ, Charles IG, Smith A, Ure J, Feng GJ, Huang FP, Xu D, Muller W, Moncada S, Liew FY. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature. 1995; 375(6530):408–411. PMID: 7539113.
Article
17. Cuzzocrea S, Chatterjee PK, Mazzon E, Dugo L, De Sarro A, Van de Loo FA, Caputi AP, Thiemermann C. Role of induced nitric oxide in the initiation of the inflammatory response after postischemic injury. Shock. 2002; 18(2):169–176. PMID: 12166782.
Article
18. Gunnett CA, Lund DD, McDowell AK, Faraci FM, Heistad DD. Mechanisms of inducible nitric oxide synthase-mediated vascular dysfunction. Arterioscler Thromb Vasc Biol. 2005; 25(8):1617–1622. PMID: 15933248.
19. Hauser B, Matejovic M, Radermacher P. Nitric oxide, leukocytes and microvascular permeability: causality or bystanders? Crit Care. 2008; 12(1):104. PMID: 18226179.
Article
20. Lange M, Nakano Y, Traber DL, Hamahata A, Esechie A, Jonkam C, Bansal K, Traber LD, Enkhbaatar P. Role of different nitric oxide synthase isoforms in a murine model of acute lung injury and sepsis. Biochem Biophys Res Commun. 2010; 399(2):286–291. PMID: 20655878.
Article
21. Hayashi T, Matsui-Hirai H, Fukatsu A, Sumi D, Kano-Hayashi H, Rani P JA, Iguchi A. Selective iNOS inhibitor, ONO1714 successfully retards the development of high-cholesterol diet induced atherosclerosis by novel mechanism. Atherosclerosis. 2006; 187(2):316–324. PMID: 16325187.
Article
22. Hersch M, Scott JA, Izbicki G, McCormack D, Cepinkas G, Ostermann M, Sibbald WJ. Differential inducible nitric oxide synthase activity in circulating neutrophils vs. mononuclears of septic shock patients. Intensive Care Med. 2005; 31(8):1132–1135. PMID: 15959762.
Article
23. Tham DM, Martin-McNulty B, Wang YX, Wilson DW, Vergona R, Sullivan ME, Dole W, Rutledge JC. Angiotensin II is associated with activation of NF-κB-mediated genes and downregulation of PPARs. Physiol Genomics. 2002; 11(1):21–30. PMID: 12361987.
Article
24. Theuer J, Dechend R, Muller DN, Park JK, Fiebeler A, Barta P, Ganten D, Haller H, Dietz R, Luft FC. Angiotensin II induced inflammation in the kidney and in the heart of double transgenic rats. BMC Cardiovasc Disord. 2002; 2:3. PMID: 11835691.
Article
25. Gemici B, Tan R, Ongut G, Izgüt-Uysal VN. Expressions of inducible nitric oxide synthase and cyclooxygenase-2 in gastric ischemia-reperfusion: role of angiotensin II. J Surg Res. 2010; 161(1):126–133. PMID: 19959193.
Article
26. Yao R, Cheng X, Chen Y, Xie JJ, Yu X, Liao MY, Ding YJ, Tang TT, Liao YH. Molecular mechanisms of irbesartan suppressing atherosclerosis in high cholesterol-diet apolipoprotein E knock-out mice. Int J Cardiol. 2010; 139(2):113–122. PMID: 19028402.
27. Ohishi M, Dusting GJ, Fennessy PA, Mendelsohn FA, Li XC, Zhuo JL. Increased expression and co-localization of ACE, angiotensin II AT(1) receptors and inducible nitric oxide synthase in atherosclerotic human coronary arteries. Int J Physiol Pathophysiol Pharmacol. 2010; 2(2):111–124. PMID: 21179388.
28. Cooper R, Morré DJ, Morré DM. Medicinal benefits of green tea: Part 1. Review of noncancer health benefits. J Altern Complement Med. 2005; 11:521–528. PMID: 15992239.
29. Ramesh E, Geraldine P, Thomas PA. Regulatory effect of epigallocatechin gallate on the expression of C-reactive protein and other inflammatory markers in an experimental model of atherosclerosis. Chem Biol Interact. 2010; 183(1):125–132. PMID: 19782057.
Article
30. Kim JS, Kim JM, O JJ, Jeon BS. Inhibition of inducible nitric oxide synthase expression and cell death by (-)-epigallocatechin-3-gallate, a green tea catechin, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. J Clin Neurosci. 2010; 17(9):1165–1168. PMID: 20541420.
Article
31. Peairs A, Dai R, Gan L, Shimp S, Rylander MN, Li L, Reilly CM. Epigallocatechin-3-gallate (EGCG) attenuates inflammation in MRL/lpr mouse mesangial cells. Cell Mol Immunol. 2010; 7(2):123–132. PMID: 20140007.
Article
32. Syed DN, Afaq F, Kweon MH, Hadi N, Bhatia N, Spiegelman VS, Mukhtar H. Green tea polyphenol EGCG suppresses cigarette smoke condensate-induced NF-κB activation in normal human bronchial epithelial cells. Oncogene. 2007; 26(5):673–682. PMID: 16862172.
Article
33. Harper CE, Patel BB, Wang J, Eltoum IA, Lamartiniere CA. Epigallocatechin-3-Gallate suppresses early stage, but not late stage prostate cancer in TRAMP mice: mechanisms of action. Prostate. 2007; 67(14):1576–1589. PMID: 17705241.
Article
34. Zhang N, Weber A, Li B, Lyons R, Contag PR, Purchio AF, West DB. An inducible nitric oxide synthase-luciferase reporter system for in vivo testing of anti-inflammatory compounds in transgenic mice. J Immunol. 2003; 170(12):6307–6319. PMID: 12794164.
Article
35. Chung EY, Kim BH, Hong JT, Lee CK, Ahn B, Nam SY, Han SB, Kim Y. Resveratrol down-regulates interferon-γ-inducible inflammatory genes in macrophages: molecular mechanism via decreased STAT-1 activation. J Nutr Biochem. 2010; in press.
Article
36. Hoshino J, Park EJ, Kondratyuk TP, Marler L, Pezzuto JM, van Breemen RB, Mo S, Li Y, Cushman M. Selective synthesis and biological evaluation of sulfate-conjugated resveratrol metabolites. J Med Chem. 2010; 53(13):5033–5043. PMID: 20527891.
Article
37. Bhaskar S, Shalini V, Helen A. Quercetin regulates oxidized LDL induced inflammatory changes in changes in human PBMCs by modulating the TLR-NF-κB signaling pathway. Immunobiology. 2011; 216(3):367–373. PMID: 20828867.
38. Wan LL, Xia J, Ye D, Liu J, Chen J, Wang G. Effects of quercetin on gene and protein expression of NOX and NOS after myocardial ischemia and reperfusion in rabbit. Cardiovasc Ther. 2009; 27(1):28–33. PMID: 19207477.
Article
39. Shan Y, Zhao R, Geng W, Lin N, Wang X, Du X, Wang S. Protective effect of sulforaphane on human vascular endothelial cells against lipopolysaccharide-induced inflammatory damage. Cardiovasc Toxicol. 2010; 10(2):139–145. PMID: 20405237.
Article
40. Yang WH, Fong YC, Lee CY, Jin TR, Tzen JT, Li TM, Tang CH. Epigallocatechin-3-gallate induces cell apoptosis of human chondrosarcoma cells through apoptosis signal-regulating kinase 1 pathway. J Cell Biochem. 2011; 112(6):1601–1611. PMID: 21328612.
Article
41. Peng N, Liu JT, Guo F, Li R. Epigallocatechin-3-gallate inhibits interleukin-6- and angiotensin II-induced production of C-reactive protein in vascular smooth muscle cells. Life Sci. 2010; 86(11-12):410–415. PMID: 20100497.
Article
Full Text Links
  • LAR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr