Korean J Hepatobiliary Pancreat Surg.  2011 May;15(2):67-77. 10.14701/kjhbps.2011.15.2.67.

Ideal Experimental Rat Models for Liver Diseases

Affiliations
  • 1Department of Surgery, Yonsei University College of Medicine, Korea. kskim88@yuhs.ac
  • 2Graduate School of Yonsei University, Graduate Program of Nano Science and Technology, Korea.
  • 3Cell Therapy Center, Severance Hospital, Korea.

Abstract

There are many limitations for conducting liver disease research in human beings due to the high cost and potential ethical issues. For this reason, conducting a study that is difficult to perform in humans using appropriate animal models, can be beneficial in ascertaining the pathological physiology, and in developing new treatment modalities. However, it is difficult to determine the appropriate animal model which is suitable for research purposes, since every patient has different and diverse clinical symptoms, adverse reactions, and complications due to the pathological physiology. Also, it is not easy to reproduce identically various clinical situations in animal models. Recently, the Guide for the Care and Use of Laboratory Animals has tightened up the regulations, and therefore it is advisable to select the appropriate animals and decide upon the appropriate quantities through scientific and systemic considerations before conducting animal testing. Therefore, in this review article the authors examined various white rat animal testing models and determined the appropriate usable rat model, and the pros and cons of its application in liver disease research. The authors believe that this review will be beneficial in selecting proper laboratory animals for research purposes.

Keyword

Liver disease; Animal model; Rat

MeSH Terms

Animals
Animals, Laboratory
Humans
Liver
Liver Diseases
Models, Animal
Rats
Social Control, Formal

Figure

  • Fig. 1 Natural History of the LEC rat.19


Reference

1. Blumberg BS, Fox RC. The Daedalus effect: changes in ethical questions relating to hepatitis B virus. Ann Intern Med. 1985; 102:390–394. PMID: 3155924.
Article
2. Mullen KD, McCullough AJ. Problems with animal models of chronic liver disease: suggestions for improvement in standardization. Hepatology. 1989; 9:500–503. PMID: 2921000.
Article
3. Fourneau I, Pirenne J, Roskams T, Yap SH. An improved model of acute liver failure based on transient ischemia of the liver. Arch Surg. 2000; 135:1183–1189. PMID: 11030876.
Article
4. Newsome PN, Plevris JN, Nelson LJ, Hayes PC. Animal models of fulminant hepatic failure: a critical evaluation. Liver Transpl. 2000; 6:21–31. PMID: 10648574.
Article
5. Terblanche J, Hickman R. Animal models of fulminant hepatic failure. Dig Dis Sci. 1991; 36:770–774. PMID: 2032519.
Article
6. Hedrich HJ. Taxonomy and Stocks and strains. The Laboratory Rat. 2006. 2nd ed. Amsterdam; Boston: Elsevier.
7. Iyanagi T, Haniu M, Sogawa K, et al. Cloning and characterization of cDNA encoding 3-methylcholanthrene inducible rat mRNA for UDP-glucuronosyltransferase. J Biol Chem. 1986; 261:15607–15614. PMID: 3096993.
Article
8. Terada K, Sugiyama T. The Long-Evans Cinnamon rat: an animal model for Wilson's disease. Pediatr Int. 1999; 41:414–418. PMID: 10453197.
Article
9. Takahashi M, Shumiya S, Maekawa A, Hayashi Y, Nagase S. High susceptibility of an analbuminemic congenic strain of rats with an F344 genetic background to induced bladder cancer and its possible mechanism. Jpn J Cancer Res. 1988; 79:705–709. PMID: 3137197.
Article
10. Cubero FJ, Arza E, Maganto P, et al. Expression of bilirubin UDP-glucuronosyltransferase (bUGT) throughout fetal development: intrasplenic transplantation into Gunn rats to correct enzymatic deficiency. Dig Dis Sci. 2001; 46:2762–2767. PMID: 11768271.
11. Iyanagi T, Emi Y, Ikushiro S. Biochemical and molecular aspects of genetic disorders of bilirubin metabolism. Biochim Biophys Acta. 1998; 1407:173–184. PMID: 9748558.
Article
12. Kaufman SS, Wood RP, Shaw BW Jr, et al. Orthotopic liver transplantation for type I Crigler-Najjar syndrome. Hepatology. 1986; 6:1259–1262. PMID: 3098664.
Article
13. Sokal EM, Silva ES, Hermans D, et al. Orthotopic liver transplantation for Crigler-Najjar type I disease in six children. Transplantation. 1995; 60:1095–1098. PMID: 7482714.
Article
14. Evans HM, Kelly DA, McKiernan PJ, Hubscher S. Progressive histological damage in liver allografts following pediatric liver transplantation. Hepatology. 2006; 43:1109–1117. PMID: 16628633.
Article
15. Chowdhury JR, Kondapalli R, Chowdhury NR. Gunn rat: a model for inherited deficiency of bilirubin glucuronidation. Adv Vet Sci Comp Med. 1993; 37:149–173. PMID: 8273513.
16. Yamada T, Agui T, Suzuki Y, Sato M, Matsumoto K. Inhibition of the copper incorporation into ceruloplasmin leads to the deficiency in serum ceruloplasmin activity in Long-Evans cinnamon mutant rat. J Biol Chem. 1993; 268:8965–8971. PMID: 8473340.
Article
17. Yoshida MC, Masuda R, Sasaki M, et al. New mutation causing hereditary hepatitis in the laboratory rat. J Hered. 1987; 78:361–365. PMID: 3429843.
Article
18. Enomoto K, Takahashi H, Mori M. A new rat model for the study of hepatocarcinogenesis. J Gastroenterol Hepatol. 1992; 7:98–104. PMID: 1543875.
Article
19. Bromberg J. Stat proteins and oncogenesis. J Clin Invest. 2002; 109:1139–1142. PMID: 11994401.
Article
20. Sugawara N, Sugawara C, Katakura M, Takahashi H, Mori M. Harmful effect of administration of copper on LEC rats. Res Commun Chem Pathol Pharmacol. 1991; 73:289–297. PMID: 1947442.
21. Ono T, Abe S, Yoshida MC. Hereditary low level of plasma ceruloplasmin in LEC rats associated with spontaneous development of hepatitis and liver cancer. Jpn J Cancer Res. 1991; 82:486–489. PMID: 1905693.
Article
22. Bennhold HH. Two cases of familial analbuminemia. Mars Med. 1959; 96:1–6. PMID: 13632158.
23. Cormode EJ, Lyster DM, Israels S. Analbuminemia in a neonate. J Pediatr. 1975; 86:862–867. PMID: 1127526.
Article
24. David P, Alexandre E, Chenard-Neu MP, Wolf P, Jaeck D, Richert L. Failure of liver cirrhosis induction by thioacetamide in Nagase analbuminaemic rats. Lab Anim. 2002; 36:158–164. PMID: 11943080.
Article
25. Shumiya S, Nagase S. Establishment and characteristics of three analbuminemic congenic strains of rats. Jikken Dobutsu. 1986; 35:409–416. PMID: 3467976.
Article
26. Kurisu H, Kamisaka K, Koyo T, et al. Organic anion transport study in mutant rats with autosomal recessive conjugated hyperbilirubinemia. Life Sci. 1991; 49:1003–1011. PMID: 1890927.
Article
27. Fernández-Checa JC, Takikawa H, Horie T, Ookhtens M, Kaplowitz N. Canalicular transport of reduced glutathione in normal and mutant Eisai hyperbilirubinemic rats. J Biol Chem. 1992; 267:1667–1673. PMID: 1730711.
Article
28. Hosokawa S, Tagaya O, Mikami T, et al. A new rat mutant with chronic conjugated hyperbilirubinemia and renal glomerular lesions. Lab Anim Sci. 1992; 42:27–34. PMID: 1316504.
29. Takikawa H, Sano N, Narita T, et al. Biliary excretion of bile acid conjugates in a hyperbilirubinemic mutant Sprague-Dawley rat. Hepatology. 1991; 14:352–360. PMID: 1860692.
Article
30. Takikawa H, Sano N, Wako Y, Yamanaka M. Effects of organic anions and bile acids on biliary lipid excretion in hyperbilirubinemic mutant Sprague-Dawley rats. J Hepatol. 1993; 17:247–252. PMID: 8445239.
Article
31. Shumiya S, Nagase S. Establishment of an albumin-deficient and jaundiced strain of rats. Jikken Dobutsu. 1981; 30:291–297. PMID: 7318933.
Article
32. Tonnesen K. Experimental liver failure. A comparison between hepatectomy and hepatic devascularization in the pig. Acta Chir Scand. 1977; 143:271–277. PMID: 22974.
33. Emond J, Capron-Laudereau M, Meriggi F, Bernuau J, Reynes M, Houssin D. Extent of hepatectomy in the rat. Evaluation of basal conditions and effect of therapy. Eur Surg Res. 1989; 21:251–259. PMID: 2627979.
34. Panis Y, McMullan DM, Emond JC. Progressive necrosis after hepatectomy and the pathophysiology of liver failure after massive resection. Surgery. 1997; 121:142–149. PMID: 9037225.
Article
35. Fischer M, Stotter L, Schmahl W, Gartmaier P, Erhardt W. Acute liver failure due to temporary hepatic ischemia in the pig. Acta Hepatogastroenterol (Stuttg). 1976; 23:241–249. PMID: 970080.
36. Borghi-Scoazec G, Scoazec JY, Durand F, et al. Apoptosis after ischemia-reperfusion in human liver allografts. Liver Transpl Surg. 1997; 3:407–415. PMID: 9346771.
Article
37. Garcia-Valdecasas JC, Rull R, Grande L, et al. Prostacyclin, thromboxane, and oxygen free radicals and postoperative liver function in human liver transplantation. Transplantation. 1995; 60:662–667. PMID: 7570973.
Article
38. Gasbarrini A, Colantoni A, Di Campli C, et al. Intermittent anoxia reduces oxygen free radicals formation during reoxygenation in rat hepatocytes. Free Radic Biol Med. 1997; 23:1067–1072. PMID: 9358250.
Article
39. Shirasugi N, Wakabayashi G, Shimazu M, et al. Up-regulation of oxygen-derived free radicals by interleukin-1 in hepatic ischemia/reperfusion injury. Transplantation. 1997; 64:1398–1403. PMID: 9392301.
40. Kountouras J, Billing BH, Scheuer PJ. Prolonged bile duct obstruction: a new experimental model for cirrhosis in the rat. Br J Exp Pathol. 1984; 65:305–311. PMID: 6743531.
41. Chang ML, Yeh CT, Chang PY, Chen JC. Comparison of murine cirrhosis models induced by hepatotoxin administration and common bile duct ligation. World J Gastroenterol. 2005; 11:4167–4172. PMID: 16015684.
Article
42. Keppler D, Lesch R, Reutter W, Decker K. Experimental hepatitis induced by D-galactosamine. Exp Mol Pathol. 1968; 9:279–290. PMID: 4952077.
Article
43. Keppler D, Decker K. Mechanism of action of D-galactosamine in the liver. Verh Dtsch Ges Inn Med. 1971; 77:1182–1185. PMID: 5155985.
44. Takahashi N, Ishizuya T, Mori N. In-vitro preparation of experimental models of hepatitis with D-galactosamine and their modification by liver-repairing factors. Int J Tissue React. 1990; 12:263–268. PMID: 2098368.
45. Gantner F, Kusters S, Wendel A, Hatzelmann A, Schudt C, Tiegs G. Protection from T cell-mediated murine liver failure by phosphodiesterase inhibitors. J Pharmacol Exp Ther. 1997; 280:53–60. PMID: 8996181.
46. Leist M, Gantner F, Kunstle G, et al. The 55-kD tumor necrosis factor receptor and CD95 independently signal murine hepatocyte apoptosis and subsequent liver failure. Mol Med. 1996; 2:109–124. PMID: 8900539.
Article
47. Makin AJ, Hughes RD, Williams R. Systemic and hepatic hemodynamic changes in acute liver injury. Am J Physiol. 1997; 272:G617–G625. PMID: 9124583.
Article
48. Black M. Acetaminophen hepatotoxicity. Gastroenterology. 1980; 78:382–392. PMID: 6985598.
Article
49. Boyd EM, Bereczky GM. Liver necrosis from paracetamol. Br J Pharmacol Chemother. 1966; 26:606–614. PMID: 5959211.
Article
50. Boyd EM, Hogan SE. The chronic oral toxicity of paracetamol at the range of the LD50 (100 days) in albino rats. Can J Physiol Pharmacol. 1968; 46:239–245. PMID: 5690725.
Article
51. Davidson DG, Eastham WN. Acute liver necrosis following overdose of paracetamol. Br Med J. 1966; 2:497–499. PMID: 5913083.
Article
52. Corcoran GB, Mitchell JR, Vaishnav YN, Horning EC. Evidence that acetaminophen and N-hydroxyacetaminophen form a common arylating intermediate, N-acetyl-p-benzoquinoneimine. Mol Pharmacol. 1980; 18:536–542. PMID: 7464816.
53. Jollow DJ, Thorgeirsson SS, Potter WZ, Hashimoto M, Mitchell JR. Acetaminophen-induced hepatic necrosis. VI. Metabolic disposition of toxic and nontoxic doses of acetaminophen. Pharmacology. 1974; 12:251–271. PMID: 4449889.
54. Mohandas J, Duggin GG, Horvath JS, Tiller DJ. Metabolic oxidation of acetaminophen (paracetamol) mediated by cytochrome P-450 mixed-function oxidase and prostaglandin endoperoxide synthetase in rabbit kidney. Toxicol Appl Pharmacol. 1981; 61:252–259. PMID: 6798713.
Article
55. Gardner CR, Heck DE, Yang CS, et al. Role of nitric oxide in acetaminophen-induced hepatotoxicity in the rat. Hepatology. 1998; 27:748–754. PMID: 9500703.
Article
56. Green MD, Fischer LJ. Hepatotoxicity of acetaminophen in neonatal and young rats. II. Metabolic aspects. Toxicol Appl Pharmacol. 1984; 74:125–133. PMID: 6729817.
57. Green MD, Shires TK, Fischer LJ. Hepatotoxicity of acetaminophen in neonatal and young rats. I. Age-related changes in susceptibility. Toxicol Appl Pharmacol. 1984; 74:116–124. PMID: 6729816.
58. Gregus Z, Madhu C, Goon D, Klaassen CD. Effect of galactosamine-induced hepatic UDP-glucuronic acid depletion on acetaminophen elimination in rats. Dispositional differences between hepatically and extrahepatically formed glucuronides of acetaminophen and other chemicals. Drug Metab Dispos. 1988; 16:527–533. PMID: 2903018.
59. Hübner G. Ultrastructural liver damage caused by direct action of carbon tetrachloride in vivo and in vitro. Virchows Arch Pathol Anat Physiol Klin Med. 1965; 339:187–197. PMID: 5294328.
60. Smith DH. Carbon tetrachloride toxicity. Br Med J. 1965; 2:1434. PMID: 5850693.
Article
61. Das PK, Chopra P, Nayak NC. Hepatocellular tolerance to carbon tetrachloride induced injury in the rat: a study of its nature and possible mode of evolution. Exp Mol Pathol. 1974; 21:218–236. PMID: 4370063.
Article
62. Shi J, Aisaki K, Ikawa Y, Wake K. Evidence of hepatocyte apoptosis in rat liver after the administration of carbon tetrachloride. Am J Pathol. 1998; 153:515–525. PMID: 9708811.
Article
63. Dashti H, Jeppsson B, Hagerstrand I, et al. Thioacetamide- and carbon tetrachloride-induced liver cirrhosis. Eur Surg Res. 1989; 21:83–91. PMID: 2767088.
Article
64. Nakano A, Kanda T, Abe H. Bone changes and mineral metabolism disorders in rats with experimental liver cirrhosis. J Gastroenterol Hepatol. 1996; 11:1143–1154. PMID: 9034934.
65. Recknagel RO, Ghoshal AK. New data on the question of lipoperoxidation in carbon tetrachloride poisoning. Exp Mol Pathol. 1966; 5:108–117. PMID: 5937378.
Article
66. Slater TF, Strauli UD, Sawyer BC. Changes in liver nucleotide concentrations in experimental liver injury. 1. Carbon tetrachloride poisoning. Biochem J. 1964; 93:260–266. PMID: 4378747.
Article
67. Benedetti A, Ferrali M, Chieli E, Comporti M. A study of the relationships between carbon tetrachloride-induced lipid peroxidation and liver damage in rats pretreated with vitamin E. Chem Biol Interact. 1974; 9:117–134. PMID: 4371705.
Article
68. Recknagel RO, Ghoshal AK. Lipoperoxidation of rat liver microsomal lipids induced by carbon tetrachloride. Nature. 1966; 210:1162–1163. PMID: 4960496.
Article
69. Nielsen VK, Larsen J. Acute renal failure due to carbon tetrachloride poisoning. Acta Med Scand. 1965; 178:363–374. PMID: 5829110.
Article
70. Sinicrope RA, Gordon JA, Little JR, Schoolwerth AC. Carbon tetrachloride nephrotoxicity: a reassessment of pathophysiology based upon the urinary diagnostic indices. Am J Kidney Dis. 1984; 3:362–365. PMID: 6702822.
Article
71. Chieli E, Malvaldi G. Role of the microsomal FAD-containing monooxygenase in the liver toxicity of thioacetamide S-oxide. Toxicology. 1984; 31:41–52. PMID: 6729835.
Article
72. Bruck R, Oren R, Shirin H, et al. Hypothyroidism minimizes liver damage and improves survival in rats with thioacetamide induced fulminant hepatic failure. Hepatology. 1998; 27:1013–1020. PMID: 9537441.
Article
73. Peeling J, Shoemaker L, Gauthier T, Benarroch A, Sutherland GR, Minuk GY. Cerebral metabolic and histological effects of thioacetamide-induced liver failure. Am J Physiol. 1993; 265:G572–G578. PMID: 8214078.
Article
74. Zimmermann C, Ferenci P, Pifl C, et al. Hepatic encephalopathy in thioacetamide-induced acute liver failure in rats: characterization of an improved model and study of amino acid-ergic neurotransmission. Hepatology. 1989; 9:594–601. PMID: 2564368.
Article
75. Fontana L, Moreira E, Torres MI, et al. Serum amino acid changes in rats with thioacetamide-induced liver cirrhosis. Toxicology. 1996; 106:197–206. PMID: 8571392.
Article
76. Petermann H, Heymann S, Vogl S, Dargel R. Phagocytic function and metabolite production in thioacetamide-induced liver cirrhosis: a comparative study in perfused livers and cultured Kupffer cells. J Hepatol. 1996; 24:468–477. PMID: 8738734.
Article
77. Cui FJ, Choi SB, Cho JA, et al. The development of an efficient rat hepatic cirrhosis model. Korean J Hepatobiliary Pancreat Surg. 2007; 11:46–52.
Full Text Links
  • KJHBPS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr