1). Klein CP, Driessen AA, de Groot K, Van Den Hooff A. Biodegradation behavior of various calcium phosphate materials in bone tissue. J Biomed Mat Res. 1983; 17:769–784.
Article
2). Hench LL, Wilson JW. Surface-active Biomaterial. Sci -ence. 1984; 226:630.
3). Hench LL, Paschall HA. Histo-chemical responses at a biomaterials interface. J Biomed Mater Res. 1974; 5:49–64.
Article
4). Hench LL: Bioceramics. From concept to clinic. J Am Ceram Soc. 1991; 81:1497–1510.
5). Kokubo T, Ito S, Sakka S, Yamamuro T. Formation of a high-strength bioactive glass-ceramic in the system MgO-CaO-SiO2-P2O5. J Mater Sci. 1986; 21:536–540.
6). Lee JH, Ha JH, Lee DH, et al. Evaluation of biodegradation and osteosynthesis in CaO-SiO2-B2 O3 glass-ceram -ics by posterolateral fusion of rabbit lumbar vertebrae. J Kor Orthop Assoc. 2003; 38:347–353.
7). Ryu HS, Seo JH, Kim H, et al. Preparation of CaO-SiO2- B2 O3 glass-ceramics and evaluation of bioactivity using in-vitro test. J Kor Ceramic Soc. 2002; 39:490–497.
8). Boden SD, Schimandle JH, Hutton WC. An experimental lumbar intertransverse process spinal fusion model. Radiographic, histologic, and biomechanical healing characteristics. Spine. 1995; 20:412–420.
9). Glazer PA, Heilmann MR, Lotz JC, Bradford DS. Use of electromagnetic fields in a spinal fusion: A rabbit model. Spine. 1997; 22:2351–2365.
10). Holmes RE, Bucholz RW, Mooney V. Porous hydroxyapatite as a bone graft substitute in diaphyseal defects: a histometric study. J Orthop Res. 1987; 5:114–121.
Article
11). Uchida A, Nada SM, McCartney ER, Ching W. The use of ceramics for bone replacement. A comparative study of three different porous ceramics. J Bone Joint Surg. 1984; 66-B:269–275.
Article
12). Eggli PS, Muller W, Schenk RK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. Clin Orthop. 1988; 232:127–138.
Article
13). Blokhuis TJ, Termaat MF, den Boer FC, Patka P, Bakker FC, Haarman HJ. Properties of calcium phosphate ceramics in relation to their in vivo behavior. J Trauma. 2000; 48(1):179–186.
Article
14). Lee JH, Lee DH, Ryu HS, et al. Porous beta-calcium pyrophosphate as a bone graft substitute in a canine bone defect model. Key Eng Mat. 2003; 240-242:399–402.
Article
15). Boden SD. Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. Spine. 2002; 27:S26–S31.
Article
16). Boden SD, Martin Jr GJ, Morone M, Ugbo JL, Titus L, Hutton WC. The use of coralline hydroxyapatite with bone marrow, autogenous bone graft, or osteoinductive bone protein extract for posterolateral lumbar spine fusion. Spine. 1999; 24:320–327.
Article
17). Bozic KJ, Glazer PA, Zurakowski D, Simon BJ, Lipson SJ, Hayes WC. In vivo evaluation of coralline hydroxyapatite and direct current electrical stimulation in lumbar spinal fusion. Spine. 1999; 24:2127–2133.
Article