1. Yang SK, Yun S, Kim JH, et al. Epidemiology of inflammatory bowel disease in the Songpa-Kangdong district, Seoul, Korea, 1986–2005: a KASID study. Inflamm Bowel Dis. 2008; 14:542–549.
Article
2. Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002; 347:417–429.
Article
3. Neurath MF, Finotto S, Glimcher LH. The role of Th1/Th2 polar-ization in mucosal immunity. Nat Med. 2002; 8:567–573.
Article
4. Duerr RH, Taylor KD, Brant SR, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006; 314:1461–1463.
5. Mudter J, Neurath MF. Il-6 signaling in inflammatory bowel disease: pathophysiological role and clinical relevance. Inflamm Bowel Dis. 2007; 13:1016–1023.
Article
6. Olsen T, Rismo R, Cui G, Goll R, Christiansen I, Florholmen J. TH1 and TH17 interactions in untreated inflamed mucosa of inflammatory bowel disease, and their potential to mediate the inflammation. Cytokine. 2011; 56:633–640.
Article
7. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995; 155:1151–1164.
8. Henderson WR Jr. The role of leukotrienes in inflammation. Ann Intern Med. 1994; 121:684–697.
Article
9. Dahlén SE, Björk J, Hedqvist P, et al. Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: in vivo effects with relevance to the acute inflammatory response. Proc Natl Acad Sci U S A. 1981; 78:3887–3891.
10. Rachmilewitz D, Simon PL, Schwartz LW, Griswold DE, Fonda-caro JD, Wasserman MA. Inflammatory mediators of experimental colitis in rats. Gastroenterology. 1989; 97:326–337.
Article
11. Boughton-Smith NK, Hawkey CJ, Whittle BJ. Biosynthesis of lip-oxygenase and cyclooxygenase products from [14C]-arachi-donic acid by human colonic mucosa. Gut. 1983; 24:1176–1182.
Article
12. Berger W, De Chandt MT, Cairns CB. Zileuton: clinical implications of 5-Lipoxygenase inhibition in severe airway disease. Int J Clin Pract. 2007; 61:663–676.
Article
13. Song H, Oh SR, Lee HK, et al. Synthesis and evaluation of benzoxazole derivatives as 5-lipoxygenase inhibitors. Bioorg Med Chem. 2010; 18:7580–7585.
Article
14. Stevceva L, Pavli P, Husband A, Ramsay A, Doe WF. Dextran sulphate sodium-induced colitis is ameliorated in interleukin 4 deficient mice. Genes Immun. 2001; 2:309–316.
Article
15. Kihara N, de la Fuente SG, Fujino K, Takahashi T, Pappas TN, Mantyh CR. Vanilloid receptor-1 containing primary sensory neurones mediate dextran sulphate sodium induced colitis in rats. Gut. 2003; 52:713–719.
Article
16. Jang MH, Sougawa N, Tanaka T, et al. CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J Immunol. 2006; 176:803–810.
Article
17. Lauritsen K, Laursen LS, Bukhave K, Rask-Madsen J. Effects of topical 5-aminosalicylic acid and prednisolone on prostaglandin E2 and leukotriene B4 levels determined by equilibrium in vivo dialysis of rectum in relapsing ulcerative colitis. Gastroenterology. 1986; 91:837–844.
Article
18. Lauritsen K, Laursen LS, Bukhave K, Rask-Madsen J. In vivo effects of orally administered prednisolone on prostaglandin and leucotriene production in ulcerative colitis. Gut. 1987; 28:1095–1099.
Article
19. Cuzzocrea S, Rossi A, Mazzon E, et al. 5-Lipoxygenase modulates colitis through the regulation of adhesion molecule expression and neutrophil migration. Lab Invest. 2005; 85:808–822.
Article
20. Bertrán X, Mañé J, Fernández-Bañares F, et al. Intracolonic administration of zileuton, a selective 5-lipoxygenase inhibitor, accelerates healing in a rat model of chronic colitis. Gut. 1996; 38:899–904.
Article
21. Singh VP, Patil CS, Kulkarni SK. Effect of 5-lipoxygenase inhibition on events associated with inflammatory bowel disease in rats. Indian J Exp Biol. 2004; 42:667–673.
22. Zarif A, Eiznhamer D, Callaghan C, Doria MI, Broutman L, Keshavarzian A. The effect of a selective 5-lipoxygenase inhibitor, zileuton, on tissue damage in acute colonic inflammation in rats. Inflammation. 1996; 20:217–227.
Article
23. Hawkey CJ, Dube LM, Rountree LV, Linnen PJ, Lancaster JF. A trial of zileuton versus mesalazine or placebo in the maintenance of remission of ulcerative colitis. The European Zileuton Study Group For Ulcerative Colitis. Gastroenterology. 1997; 112:718–724.
Article
24. Holma R, Salmenperä P, Riutta A, Virtanen I, Korpela R, Vapaatalo H. Acute effects of the cys-leukotriene-1 receptor antagonist, montelukast, on experimental colitis in rats. Eur J Pharmacol. 2001; 429:309–318.
Article
25. Hawthorne AB, Boughton-Smith NK, Whittle BJ, Hawkey CJ. Colorectal leukotriene B4 synthesis in vitro in inflammatory bowel disease: inhibition by the selective 5-lipoxygenase inhibitor BWA4C. Gut. 1992; 33:513–517.
Article
26. Ito R, Kita M, ShinYa M, et al. Involvement of IL-17A in the pathogenesis of DSS-induced colitis in mice. Biochem Biophys Res Commun. 2008; 377:12–16.
Article
27. Leppkes M, Becker C, Ivanov II, et al. RORgamma-expressing Th17 cells induce murine chronic intestinal inflammation via re-dundant effects of IL-17A and IL-17F. Gastroenterology. 2009; 136:257–267.
28. Alex P, Zachos NC, Nguyen T, et al. Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm Bowel Dis. 2009; 15:341–352.
Article
29. Stassen M, Schmitt E, Bopp T. From interleukin-9 to T helper 9 cells. Ann N Y Acad Sci. 2012; 1247:56–68.
Article
30. Mottet C, Uhlig HH, Powrie F. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. J Immunol. 2003; 170:3939–3943.
Article