Korean J Physiol Pharmacol.
2001 Dec;5(6):467-477.
Regional heterogeneity of morphological changes in cultured rat astrocytes
- Affiliations
-
- 1Department of Pharmacology, College of Medicine, Korea University, Seoul, 136-071, Korea. wonck@yahoo.com
Abstract
- We examined astrocyte regional heterogeneity in their morphological changes in response to various stimuli. Astrocytes were cultured from six different neonatal rat brain regions including cerebral cortex, hippocampus, cerebellum, mid brain, brain stem and hypothalamus. Astrocyte stellation was induced by serum deprivation and the maximum stellation in different regional astrocytes was achieved after 2 h. After 24 h, in all astrocyte cultures, the level of stellation returned to their original level. Cerebellar or hypothalamic astrocytes were the most or the least sensitive, respectively, to serum deprivation. The order of maximum sensitivity to serum deprivation among different regional astrocytes was: cerebellum>mid braingtoreqhippocampus, brain stemgtoreqcerebral cortex>hypothalamus. Isoproterenol-induced astrocyte stellation was also examined in different regional astrocytes, and similar order of maximum sensitivity as in serum deprivation was observed. Next a possible developmental effect on astrocyte morphological changes was examined in cerebral cortex and cerebellum astrocytes cultured from postnatal day 1 (P1), P4 and P7 rat brains. A much higher sensitivity of cerebellum astrocytes to serum deprivation as well as isoproterenol treatment was consistently observed in P1, P4 and P7-derived astrocytes compared to cerebral cortex astrocytes. The present study demonstrates different regional astrocytes maintain different levels of morphological plasticity in vitro.