Korean J Nucl Med.  2003 Feb;37(1):43-52.

Radioactive cDNA microarray in Neurospsychiatry

Affiliations
  • 1Department of Nuclear Medicine, Korea University Medical School, Seoul, Korea.
  • 2Department of Pharmacology, Korea University Medical School, Seoul, Korea.
  • 3Department of Psychiatrics, Korea University Medical School, Seoul, Korea.
  • 4Department of Biochemistry and Molecular Biology, Korea University Medical School, Seoul, Korea. jerrykim@korea.ac.kr

Abstract

Microarray technology allows the simultaneous analysis of gene expression patterns of thousands of genes, in a systematic fashion, under a similar set of experimental conditions, thus making the data highly comparable. In some cases arrays are used simply as a primary screen leading to downstream molecular characterization of individual gene candidates. In other cases, the goal of expression profiling is to begin to identify complex regulatory networks underlying developmental processes and disease states. Microarrays were originally used with cell lines or other simple model systems. More recently, microarrays have been used in the analysis of more complex biological tissues including neural systems and the brain. The application of cDNA arrays in neuropsychiatry has lagged behind other fields for a number of reasons. These include a requirement for a large amount of input probe RNA in fluorescent-glass based array systems and the cellular complexity introduced by multicellular brain and neural tissues. An additional factor that impacts the general use of microarrays in neuropsychiatry is the lack of availability of sequenced clone sets from model systems. While human cDNA clones have been widely available, high quality rat, mouse, and drosophilae, among others are just becoming widely available. A final factor in the application of cDNA microarrays in neuropsychiatry is cost of commercial arrays. As academic microarray facilitates become more commonplace custom made arrays will become more widely available at a lower cost allowing more widespread applications. In summary, microarray technology is rapidly having an impact on many areas of biomedical research. Radioisotope-nylon based microarrays offer alternatives that may in some cases be more sensitive, flexible, inexpensive, and universal as compared to other array formats, such as fluorescent-glass arrays. In some situations of limited RNA or exotic species, radioactive membrane microarrays may be the most practical experimental approach in studying psychiatric and neurodegenerative disorders, and other complex questions in the brain.


MeSH Terms

Animals
Brain
Cell Line
Clone Cells
DNA, Complementary*
Drosophila
Gene Expression
Humans
Membranes
Mice
Neurodegenerative Diseases
Neuropsychiatry
Oligonucleotide Array Sequence Analysis*
Rats
RNA
DNA, Complementary
RNA
Full Text Links
  • KJNM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr