Korean J Radiol.  2013 Apr;14(2):375-383. 10.3348/kjr.2013.14.2.375.

Imaging Characteristics of Stage I Non-Small Cell Lung Cancer on CT and FDG-PET: Relationship with Epidermal Growth Factor Receptor Protein Expression Status and Survival

Affiliations
  • 1Department of Radiology, Seoul National University Hospital, Seoul 110-744, Korea. rosaceci@radiol.snu.ac.kr
  • 2Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Cancer Research Institute, Xenotransplantation Research Center, Clinical Research Center, Seoul National University College of Medicine, Seoul 110-744, Korea.
  • 3Department of Nuclear Medicine, Seoul National University Hospital, Seoul 110-744, Korea.
  • 4Department of Pathology, Seoul National University Hospital, Seoul 110-744, Korea.
  • 5Department of Radiology, SMG-SNU Boramae Medical Center, Seoul 156-707, Korea.

Abstract


OBJECTIVE
To identify CT and FDG-PET features associated with epidermal growth factor receptor (EGFR) protein overexpression, and to evaluate whether imaging features and EGFR-overexpression can help predict clinical outcome.
MATERIALS AND METHODS
In 214 patients (M : F = 129 : 85; mean age, 63.2) who underwent curative resection of stage I non-small cell lung cancer, EGFR protein expression status was determined through immunohistochemical analysis. Imaging characteristics on CT and FDG-PET was assessed in relation to EGFR-overexpression. Imaging features and EGFR-overexpression were also evaluated for clinical outcome by using the Cox proportional hazards model.
RESULTS
EGFR-overexpression was found in 51 patients (23.8%). It was significantly more frequent in tumors with an SUVmax > 5.0 (p < 0.0001), diameter > 2.43 cm (p < 0.0001), and with ground glass opacity < or = 50% (p = 0.0073). SUVmax > 5.0 (OR, 3.113; 95% CI, 1.375-7.049; p = 0.006) and diameter > 2.43 cm (OR, 2.799; 95% CI, 1.285-6.095; p = 0.010) were independent predictors of EGFR overexpression. Multivariate analysis showed that SUVmax > 4.0 (hazard ratio, 10.660; 95% CI, 1.370-82.966; p = 0.024), and the presence of cavitation within a tumor (hazard ratio, 3.122; 95% CI, 1.143-8.532; p = 0.026) were factors associated with poor prognosis.
CONCLUSION
EGFR-overexpression is associated with high SUVmax, large tumor diameter, and small GGO proportion. CT and FDG-PET findings, which are closely related to EGFR overexpression, can be valuable in the prediction of clinical outcome.

Keyword

EGFR; EGFR protein; CT; FDG-PET; Non-small cell lung cancer

MeSH Terms

Adult
Aged
Aged, 80 and over
Carcinoma, Non-Small-Cell Lung/metabolism/mortality/*radiography/*radionuclide imaging
Chi-Square Distribution
Female
Fluorodeoxyglucose F18/therapeutic use
Humans
Lung Neoplasms/metabolism/mortality/*radiography/*radionuclide imaging
Male
Middle Aged
Neoplasm Staging
Positron-Emission Tomography/*methods
Proportional Hazards Models
ROC Curve
Radiopharmaceuticals/diagnostic use
Receptor, Epidermal Growth Factor/*metabolism
Statistics, Nonparametric
Survival Rate
Tomography, X-Ray Computed/*methods
Radiopharmaceuticals
Fluorodeoxyglucose F18
Receptor, Epidermal Growth Factor

Figure

  • Fig. 1 Adenocarcinoma with EGFR overexpression found in 50-year-old man. Contrast-enhanced CT scan (A) reveals 2.77 cm solid nodule in left lower lobe. Nodule showed increased fluorodeoxyglucose uptake with maximum standardized uptake value of 8.00 (B) on FDG-PET/CT scan. Disease-free survival time of this patient was 9.7 months. EGFR = epidermal growth factor receptor

  • Fig. 2 Adenocarcinoma without EGFR overexpression found in 62-year-old woman. Contrast-enhanced CT scan (A) reveals 1.23 cm subsolid nodule with GGO proportion > 50% in right middle lobe. Nodule showed maximum standardized uptake value of 1.7 (B) on FDG-PET/CT scan. Patient has no recurrence during 4-year of postoperative follow-up period. EGFR = epidermal growth factor receptor, GGO = ground glass opacity


Reference

1. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 2002. 346:92–98.
2. Cappuzzo F, Gregorc V, Rossi E, Cancellieri A, Magrini E, Paties CT, et al. Gefitinib in pretreated non-small-cell lung cancer (NSCLC): analysis of efficacy and correlation with HER2 and epidermal growth factor receptor expression in locally advanced or metastatic NSCLC. J Clin Oncol. 2003. 21:2658–2663.
3. Huang SM, Harari PM. Epidermal growth factor receptor inhibition in cancer therapy: biology, rationale and preliminary clinical results. Invest New Drugs. 1999. 17:259–269.
4. Nicholson RI, Gee JM, Harper ME. EGFR and cancer prognosis. Eur J Cancer. 2001. 37:Suppl 4. S9–S15.
5. Ohsaki Y, Tanno S, Fujita Y, Toyoshima E, Fujiuchi S, Nishigaki Y, et al. Epidermal growth factor receptor expression correlates with poor prognosis in non-small cell lung cancer patients with p53 overexpression. Oncol Rep. 2000. 7:603–607.
6. Volm M, Rittgen W, Drings P. Prognostic value of ERBB-1, VEGF, cyclin A, FOS, JUN and MYC in patients with squamous cell lung carcinomas. Br J Cancer. 1998. 77:663–669.
7. Goldstraw P, Crowley J, Chansky K, Giroux DJ, Groome PA, Rami-Porta R, et al. The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J Thorac Oncol. 2007. 2:706–714.
8. Rusch VW, Crowley J, Giroux DJ, Goldstraw P, Im JG, Tsuboi M, et al. The IASLC Lung Cancer Staging Project: proposals for the revision of the N descriptors in the forthcoming seventh edition of the TNM classification for lung cancer. J Thorac Oncol. 2007. 2:603–612.
9. Postmus PE, Brambilla E, Chansky K, Crowley J, Goldstraw P, Patz EF Jr, et al. The IASLC Lung Cancer Staging Project: proposals for revision of the M descriptors in the forthcoming (seventh) edition of the TNM classification of lung cancer. J Thorac Oncol. 2007. 2:686–693.
10. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011. 6:244–285.
11. Lee HJ, Goo JM, Lee CH, Park CM, Kim KG, Park EA, et al. Predictive CT findings of malignancy in ground-glass nodules on thin-section chest CT: the effects on radiologist performance. Eur Radiol. 2009. 19:552–560.
12. Park EA, Lee HJ, Kim YT, Kang CH, Kang KW, Jeon YK, et al. EGFR gene copy number in adenocarcinoma of the lung by FISH analysis: investigation of significantly related factors on CT, FDG-PET, and histopathology. Lung Cancer. 2009. 64:179–186.
13. Jeon YK, Sung SW, Chung JH, Park WS, Seo JW, Kim CW, et al. Clinicopathologic features and prognostic implications of epidermal growth factor receptor (EGFR) gene copy number and protein expression in non-small cell lung cancer. Lung Cancer. 2006. 54:387–398.
14. Rami-Porta R, Ball D, Crowley J, Giroux DJ, Jett J, Travis WD, et al. The IASLC Lung Cancer Staging Project: proposals for the revision of the T descriptors in the forthcoming (seventh) edition of the TNM classification for lung cancer. J Thorac Oncol. 2007. 2:593–602.
15. Groome PA, Bolejack V, Crowley JJ, Kennedy C, Krasnik M, Sobin LH, et al. The IASLC Lung Cancer Staging Project: validation of the proposals for revision of the T, N, and M descriptors and consequent stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol. 2007. 2:694–705.
16. Yano T, Morodomi Y, Ito K, Yoshida T, Haro A, Shoji F, et al. Verification of the newly proposed T category (seventh edition of the tumor, node, and metastasis classification) from a clinicopathological viewpoint in non-small cell lung cancer-special reference to tumor size. J Thorac Oncol. 2010. 5:45–48.
17. Lee KW, Im JG, Kim TJ, Dae CM. A new method of measuring the amount of soft tissue in pulmonary ground-glass opacity nodules: a phantom study. Korean J Radiol. 2008. 9:219–225.
18. van Klaveren RJ, Oudkerk M, Prokop M, Scholten ET, Nackaerts K, Vernhout R, et al. Management of lung nodules detected by volume CT scanning. N Engl J Med. 2009. 361:2221–2229.
19. Sasaki R, Komaki R, Macapinlac H, Erasmus J, Allen P, Forster K, et al. [18F]fluorodeoxyglucose uptake by positron emission tomography predicts outcome of non-small-cell lung cancer. J Clin Oncol. 2005. 23:1136–1143.
20. Shin KM, Lee KS, Shim YM, Kim J, Kim BT, Kwon OJ, et al. FDG PET/CT and mediastinal nodal metastasis detection in stage T1 non-small cell lung cancer: prognostic implications. Korean J Radiol. 2008. 9:481–489.
21. Taylor MD, Smith PW, Brix WK, Wick MR, Theodosakis N, Swenson BR, et al. Fluorodeoxyglucose positron emission tomography and tumor marker expression in non-small cell lung cancer. J Thorac Cardiovasc Surg. 2009. 137:43–48.
22. Giroux DJ, Rami-Porta R, Chansky K, Crowley JJ, Groome PA, Postmus PE, et al. The IASLC Lung Cancer Staging Project: data elements for the prospective project. J Thorac Oncol. 2009. 4:679–683.
23. Yano M, Sasaki H, Kobayashi Y, Yukiue H, Haneda H, Suzuki E, et al. Epidermal growth factor receptor gene mutation and computed tomographic findings in peripheral pulmonary adenocarcinoma. J Thorac Oncol. 2006. 1:413–416.
24. Onn A, Choe DH, Herbst RS, Correa AM, Munden RF, Truong MT, et al. Tumor cavitation in stage I non-small cell lung cancer: epidermal growth factor receptor expression and prediction of poor outcome. Radiology. 2005. 237:342–347.
25. Onn A, Correa AM, Gilcrease M, Isobe T, Massarelli E, Bucana CD, et al. Synchronous overexpression of epidermal growth factor receptor and HER2-neu protein is a predictor of poor outcome in patients with stage I non-small cell lung cancer. Clin Cancer Res. 2004. 10(1 Pt 1):136–143.
26. Franklin WA, Veve R, Hirsch FR, Helfrich BA, Bunn PA Jr. Epidermal growth factor receptor family in lung cancer and premalignancy. Semin Oncol. 2002. 29:1 Suppl 4. 3–14.
27. Suzuki K, Kusumoto M, Watanabe S, Tsuchiya R, Asamura H. Radiologic classification of small adenocarcinoma of the lung: radiologic-pathologic correlation and its prognostic impact. Ann Thorac Surg. 2006. 81:413–419.
28. Takashima S, Maruyama Y, Hasegawa M, Yamanda T, Honda T, Kadoya M, et al. Prognostic significance of high-resolution CT findings in small peripheral adenocarcinoma of the lung: a retrospective study on 64 patients. Lung Cancer. 2002. 36:289–295.
29. Vazquez M, Carter D, Brambilla E, Gazdar A, Noguchi M, Travis WD, et al. Solitary and multiple resected adenocarcinomas after CT screening for lung cancer: histopathologic features and their prognostic implications. Lung Cancer. 2009. 64:148–154.
30. Chaudhuri MR. Primary pulmonary cavitating carcinomas. Thorax. 1973. 28:354–366.
31. Berger M, Thompson JR. Cavitary carcinomatosis of the lungs. Report of a case. Dis Chest. 1967. 52:106–111.
32. Kolodziejski LS, Dyczek S, Duda K, Góralczyk J, Wysocki WM, Lobaziewicz W. Cavitated tumor as a clinical subentity in squamous cell lung cancer patients. Neoplasma. 2003. 50:66–73.
33. Pentheroudakis G, Kostadima L, Fountzilas G, Kalogera-Fountzila A, Klouvas G, Kalofonos C, et al. Cavitating squamous cell lung carcinoma-distinct entity or not? Analysis of radiologic, histologic, and clinical features. Lung Cancer. 2004. 45:349–355.
Full Text Links
  • KJR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr