1. Hsieh J, Pan T, Acharya KC, Shen Y, Woodford M. Non-uniform phase coded image reconstruction for cardiac CT. Radiology. 1999. 213:401.
2. Taguchi K, Anno H. High temporal resolution for multislice helical computed tomography. Med Phys. 2000. 27:861–872.
3. Vembar M, Garcia MJ, Heuscher DJ, Haberl R, Matthews D, Böhme GE, et al. A dynamic approach to identifying desired physiological phases for cardiac imaging using multislice spiral CT. Med Phys. 2003. 30:1683–1693.
4. Choi HS, Choi BW, Choe KO, Choi D, Yoo KJ, Kim MI, et al. Pitfalls, artifacts, and remedies in multi-detector row CT coronary angiography. Radiographics. 2004. 24:787–800.
5. Bruder H, Stierstorfer K, McCollough C, Raupach R, Petersilka M, Grasruck M, et al. Design considerations in cardiac CT. Proc SPIE. 2006. 6142:61420.
6. Haaga JR. Radiation dose management: weighing risk versus benefit. AJR Am J Roentgenol. 2001. 177:289–291.
7. Slovis TL. CT and computed radiography: the pictures are great, but is the radiation dose greater than required. AJR Am J Roentgenol. 2002. 179:39–41.
8. Hsieh J, Londt J, Vass M, Li J, Tang X, Okerlund D. Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys. 2006. 33:4236–4248.
9. Hurwitz LM, Reiman RE, Yoshizumi TT, Goodman PC, Toncheva G, Nguyen G, et al. Radiation dose from contemporary cardiothoracic multidetector CT protocols with an anthropomorphic female phantom: implications for cancer induction. Radiology. 2007. 245:742–750.
10.
GB Avinash
. Method and apparatus for enhancing discrete pixel images. US Patent. 6,208,763 B1. 2001.
11. Jakobs TF, Becker CR, Ohnesorge B, Flohr T, Suess C, Schoepf UJ, et al. Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol. 2002. 12:1081–1086.
12. Li J, Mohr K, Okerlund D. Dose reduction for CT coronary artery imaging using a special bowtie. Med Phys. 2004. 31:1841.
13. McCollough CH, Bruesewitz MR, Kofler JM Jr. CT dose reduction and dose management tools: overview of available options. Radiographics. 2006. 26:503–512.
14. Kalra MK, Maher MM, Toth TL, Schmidt B, Westerman BL, Morgan HT, et al. Techniques and applications of automatic tube current modulation for CT. Radiology. 2004. 233:649–657.
15. Rizzo S, Kalra M, Schmidt B, Dalal T, Suess C, Flohr T, et al. Comparison of angular and combined automatic tube current modulation techniques with constant tube current CT of the abdomen and pelvis. AJR Am J Roentgenol. 2006. 186:673–679.
16. Wilting JE, Zwartkruis A, van Leeuwen MS, Timmer J, Kamphuis AG, Feldberg M. A rational approach to dose reduction in CT: individualized scan protocols. Eur Radiol. 2001. 11:2627–2632.
17. Mahnken AH, Wildberger JE, Simon J, Koos R, Flohr TG, Schaller S, et al. Detection of coronary calcifications: feasibility of dose reduction with a body weight-adapted examination protocol. AJR Am J Roentgenol. 2003. 181:533–538.
18. Li J, Gao J, Sun X. How to obtain consistent cardiac CT image noise for patients of different sizes: body mass index based tube current selection. RSNA Abstract Book. 2007. 730.
20. Das M, Mahnken AH, Mühlenbruch G, Stargardt A, Weiss C, Sennst DA, et al. Individually adapted examination protocols for reduction of radiation exposure for 16-MDCT chest examinations. AJR Am J Roentgenol. 2005. 184:1437–1443.
21. Hur G, Hong SW, Kim SY, Kim YH, Hwang YJ, Lee WR, et al. Uniform image quality achieved by tube current modulation using SD of attenuation in coronary CT angiography. AJR Am J Roentgenol. 2007. 189:188–196.
22. Fei X, Du X, Li P, Liao J, Shen Y, Li K. Effect of dose-reduced scan protocols on cardiac coronary image quality with 64-row MDCT: a cardiac phantom study. Eur J Radiol. 2008. 67:85–91.