Yonsei Med J.  2010 Sep;51(5):768-774. 10.3349/ymj.2010.51.5.768.

Molecular Characteristics of Extended Spectrum beta-Lactamases in Escherichia coli and Klebsiella pneumoniae and the Prevalence of qnr in Extended Spectrum beta-Lactamase Isolates in a Tertiary Care Hospital in Korea

Affiliations
  • 1Department of Laboratory Medicine, Kyung Hee University School of Medicine, Seoul, Korea. leehejo@khmc.or.kr

Abstract

PURPOSE
Extended spectrum beta-lactamases (ESBLs) are cephalosporinases that confer resistance to a wide variety of oxyimino cephalosporins and create serious therapeutic problems. In addition, the quinolone resistance qnr genes are becoming increasingly prevalent in clinical isolates, some of which also produce ESBL. This study was designed to evaluate the occurrence and genotypic distribution of ESBL producing Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) as well as the prevalence and distribution of qnr genes in ESBL-producing isolates in a tertiary care hospital in Korea.
MATERIALS AND METHODS
We tested a total of 111 ESBL-producing isolates of E. coli and K. pneumoniae, which were collected at Kyung Hee Medical Center from November 2006 to June 2008. ESBL production was determined by the Clinical and Laboratory Standards Institute (CLSI) ESBL confirmatory test. The cefotaxime and ceftazidime resistance of the ESBL-producers were transferred to azide-resistant E. coli J53 by conjugation. The presence and identity of ESBL and qnr genes were determined by polymerase chain reaction (PCR) and nucleotide sequencing.
RESULTS
The prevalence of ESBLs was 17.7% (297/1,680) of E. coli and 26.5% (240/904) of K. pneumoniae in our hospital during the study periods. Of the 111 collected isolates, 69 isolates were E. coli and 42 isolates were K. pneumoniae. The most prevalent ESBL genotype was CTX-M15. Among the ESBL-producing isolates, 4 E. coli (5.8%) and 17 K. pneumoniae (40.5%) contained qnr genes. qnrB4 was the most frequent type in both E. coli and K. pneumoniae.
CONCLUSION
CTX-M15 was the most frequently encountered ESBL. In addition, a high prevalence of qnr genes among ESBL-producing K. pneumoniae was identified in this study.

Keyword

E. coli; K. pneumoniae; Antimicrobial resistance; ESBL; qnr

MeSH Terms

Azides/pharmacology
Bacterial Proteins/*metabolism
Cefotaxime/pharmacology
Ceftazidime/pharmacology
Drug Resistance, Multiple, Bacterial/genetics
Escherichia coli/drug effects/*enzymology
Escherichia coli Infections/*microbiology
Escherichia coli Proteins/*metabolism
Humans
Klebsiella Infections/*microbiology
Klebsiella pneumoniae/drug effects/*enzymology
Korea
Microbial Sensitivity Tests
Polymerase Chain Reaction
beta-Lactamases/*metabolism

Reference

1. Murray PR, Baron EJ, et al. Manual of Clinical Microbiology. 2007. 9th ed. Washington: American Society for Microbiology.
2. Bae IK, Woo GJ, Jeong SH, Park KO, Cho BK, Kim DM, et al. Prevalence of CTX-M-type extended-spectrum β-Lactamase-producing Esherichia coli and Klebsiella pneumoniae isolates in Korea. Korean J Clin Microbiol. 2004. 7:48–54.
3. Hong SG, Kim S, Jeong SH, Chang CL, Cho SR, Ahn JY, et al. Prevalence & diversity of extended-spectrum beta-Lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in Korea. Korean J Clin Microbiol. 2003. 6:149–155.
4. Kang JH, Bae IK, Kwon SB, Jeong SH, Lee J, Lee WG, et al. Prevalence of Ambler class A extended-spectrum beta-Lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in Korea. Korean J Clin Microbiol. 2005. 8:17–25.
5. Lee JH, Bae IK, Kwon SB, Jeong SH, Woo GJ, Lee J, et al. Prevalence of CTX-M-type extended-spectrum beta-Lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in Korea, 2003. Korean J Clin Microbiol. 2004. 7:111–118.
6. Park JH, Lee SH, Jeong SH, Kim BN, Kim KB, Yoon JD, et al. Characterization and prevalence of Escherichia coli and Klebsiella pneumoniae isolates producing an extended-spectrum beta-Lactamase from Korean hospitals. Korean J Lab Med. 2003. 23:18–24.
7. Song W, Kim JS, Kim MN, Kim EC, Park YJ, Yong D, et al. Occurrence and genotypic distributions of plasmid-mediated AmpC beta-Lactamase-producing Escherichia coli and Klebsiella pneumoniae in Korea. Korean J Lab Med. 2002. 22:410–416.
8. Jacoby GA, Chow N, Waites KB. Prevalence of plasmid-mediated quinolone resistance. Antimicrob Agents Chemother. 2003. 47:559–562.
Article
9. Wang M, Sahm DF, Jacoby GA, Hooper DC. Emerging plasmid-mediated quinolone resistance associated with the qnr gene in Klebsiella pneumoniae clinical isolates in the United States. Antimicrob Agents Chemother. 2004. 48:1295–1299.
Article
10. Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother. 2007. 60:394–397.
Article
11. Jones GL, Warren RE, Skidmore SJ, Davies VA, Gibreel T, Upton M. Prevalence and distribution of plasmid-mediated quinolone resistance genes in clinical isolates of Escherichia coli lacking extended-spectrum beta-lactamases. J Antimicrob Chemother. 2008. 62:1245–1251.
Article
12. Kim MH, Sung JY, Park JW, Kwon GC, Koo SH. Coproduction of qnrB and armA from extended-spectrum beta-lactamase-producing Klebsiella pneumoniae. Korean J Lab Med. 2007. 27:428–436.
Article
13. Park YJ, Yu JK, Lee S, Oh EJ, Woo GJ. Prevalence and diversity of qnr alleles in AmpC-producing Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundii and Serratia marcescens: a multicentre study from Korea. J Antimicrob Chemother. 2007. 60:868–871.
Article
14. Wang A, Yang Y, Lu Q, Wang Y, Chen Y, Deng L, et al. Occurrence of qnr-positive clinical isolates in Klebsiella pneumoniae producing ESBL or AmpC-type beta-lactamase from five pediatric hospitals in China. FEMS Microbiol Lett. 2008. 283:112–116.
Article
15. Wang A, Yang Y, Lu Q, Wang Y, Chen Y, Deng L, et al. Presence of qnr gene in Escherichia coli and Klebsiella pneumoniae resistant to ciprofloxacin isolated from pediatric patients in China. BMC Infect Dis. 2008. 8:68.
Article
16. Bassetti M, Cruciani M, Righi E, Rebesco B, Fasce R, Costa A, et al. Antimicrobial use and resistance among Gram-negative bacilli in an Italian intensive care unit (ICU). J Chemother. 2006. 18:261–267.
Article
17. Ko CS, Sung JY, Koo SH, Kwon GC, Shin SY, Park JW. Prevalence of extended-spectrum beta-lactamases in Escherichia coli and Klebsiella pneumoniae from Daejeon. Korean J Lab Med. 2007. 27:344–350.
Article
18. CLSI. Performance standards for antimicrobial susceptibility testing; eighteenth informational supplement, M100-S16. 2008. Wanye, PA: Clinical and Laboratory Standards Institute.
19. Jacoby GA, Han P. Detection of extended-spectrum beta-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli. J Clin Microbiol. 1996. 34:908–911.
Article
20. Bae IK, Jeong SH, Lee K, Yong D, Lee J, Hong SG, et al. Emergence of CTX-M12 and A Novel CTX-M Type Extended-Spectrum beta-Lactamaseproducing Klebsiella pneumoniae. Korean J Lab Med. 2006. 26:21–26.
Article
21. Livermore DM. beta-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev. 1995. 8:557–584.
Article
22. Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001. 14:933–951.
Article
23. Jones RN, Pfaller MA, Doern GV, Erwin ME, Hollis RJ. Antimicrobial activity and spectrum investigation of eight broad-spectrum beta-lactam drugs: a 1997 surveillance trial in 102 medical centers in the United States. Cefepime Study Group. Diagn Microbiol Infect Dis. 1998. 30:215–228.
Article
24. Yagi T, Kurokawa H, Shibata N, Shibayama K, Arakawa Y. A preliminary survey of extended-spectrum beta-lactamases (ESBLs) in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Japan. FEMS Microbiol Lett. 2000. 184:53–56.
Article
25. Pai H. The characteristics of extended-spectrum beta-lactamases in Korean isolates of Enterobacteriaceae. Yonsei Med J. 1998. 39:514–519.
Article
26. Hong SG, Kang M, Choi JR, Lee K, Chong Y, Kwon OH. Molecular characteristics of extended-spectrum beta-Lactamases in clinical isolates of Enterobacteriaceae. Korean J Clin Pathol. 2001. 21:495–504.
27. Kim J, Lim YM, Rheem I, Lee Y, Lee JC, Seol SY, et al. CTX-M and SHV-12 beta-lactamases are the most common extended-spectrum enzymes in clinical isolates of Escherichia coli and Klebsiella pneumoniae collected from 3 university hospitals within Korea. FEMS Microbiol Lett. 2005. 245:93–98.
Article
28. Ryoo NH, Kim EC, Hong SG, Park YJ, Lee K, Bae IK, et al. Dissemination of SHV-12 and CTX-M-type extended-spectrum beta-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea. J Antimicrob Chemother. 2005. 56:698–702.
Article
29. Kim J, Kwon Y, Pai H, Kim JW, Cho DT. Survey of Klebsiella pneumoniae strains producing extended-spectrum beta-lactamases: prevalence of SHV-12 and SHV-2a in Korea. J Clin Microbiol. 1998. 36:1446–1449.
Article
30. Hopkins KL, Threlfall EJ, Karisik E, Wardle JK. Identification of novel plasmid-mediated extended-spectrum beta-lactamase CTX-M-57 in Salmonella enterica serovar Typhimurium. Int J Antimicrob Agents. 2008. 31:85–86.
31. Nordmann P, Poirel L. Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J Antimicrob Chemother. 2005. 56:463–469.
Article
32. Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis. 2006. 6:629–640.
Article
33. Shin JH, Jung HJ, Lee JY, Kim HR, Lee JN, Chang CL. High rates of plasmid-mediated quinolone resistance QnrB variants among ciprofloxacin-resistant Escherichia coli and Klebsiella pneumoniae from urinary tract infections in Korea. Microb Drug Resist. 2008. 14:221–226.
34. Mammeri H, Van De Loo M, Poirel L, Martinez-Martinez L, Nordmann P. Emergence of plasmid-mediated quinolone resistance in Escherichia coli in Europe. Antimicrob Agents Chemother. 2005. 49:71–76.
35. Tran JH, Jacoby GA. Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci U S A. 2002. 99:5638–5642.
Article
36. Wang M, Sahm DF, Jacoby GA, Zhang Y, Hooper DC. Activities of newer quinolones against Escherichia coli and Klebsiella pneumoniae containing the plasmid-mediated quinolone resistance determinant qnr. Antimicrob Agents Chemother. 2004. 48:1400–1401.
Article
37. Shin JH, Kim HR, Lee HR, Chung JI, Min K, Moon CS, et al. Etiology and antimicrobial susceptibility of bacterial pathogens causing community-acquired urinary tract infection at a tertiary-care hospital. Korean J Clin Microbiol. 2005. 8:142–147.
38. Chong Y, Lee K, Okamoto R, Inoue M. Characteristics of Extended-spectrum beta-lactam hydrolyzing activity of Klebsiella pneumoniae and Escherichia coli strains isolated from clinical specimens. Korean J Infect Dis. 1997. 29:477–486.
Full Text Links
  • YMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr