Korean J Physiol Pharmacol.  2025 May;29(3):337-347. 10.4196/kjpp.24.275.

Hyaluronan-mediated motility receptor-mediated aerobic glycolysis enhances stem-like properties and chemoresistance in lung adenocarcinoma

Affiliations
  • 1Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing 325600, China

Abstract

Lung adenocarcinoma (LUAD) is a global malignancy with significant chemoresistance impacting patient prognosis. The pro-tumorigenic role of hyaluronan-mediated motility receptor (HMMR) in LUAD is recognized. This study was designed to investigate the underlying mechanisms by which HMMR affects chemoresistance in LUAD. Bioinformatics presented the expression patterns of HMMR in LUAD patients and the association between HMMR levels and patient survival, followed by qRT-PCR to verify HMMR expression in LUAD tissues and cells. Further, bioinformatics was leveraged to identify the signaling pathways enriched by HMMR and its relevance to glycolytic genes, we also analyzed changes in the glycolytic activity of LUAD cells by manipulating HMMR expression. Stemness was evaluated through cell aggregation assays and Western blot, and drug responsiveness was gauged using CCK-8 assays, alongside flow cytometry for apoptosis analysis. HMMR was highly expressed in LUAD tissues and cells, and this overexpression correlated with poorer prognoses in patients. GSEA showed that HMMR was notably enriched in the glycolysis and gluconeogenesis pathways, correlating positively with the expression of key glycolytic genes. Cellular experiments confirmed that HMMR knockdown notably suppressed aerobic glycolysis in LUAD cells. Moreover, overexpression of HMMR could further enhance the stemness and cisplatin resistance of LUAD cells by stimulating glycolysis. In brief, this study has validated that high levels of HMMR in LUAD are predictive of poor patient prognosis, and that overexpression of HMMR can catalyze aerobic glycolysis, thus promoting stemness and chemoresistance in LUAD cells. Thus, HMMR could be a target for improving chemosensitivity in LUAD.

Keyword

Adenocarcinoma of lung; Drug resistance, neoplasm; Glycolysis; Hyaluronan receptors; Neoplastic stem cells

Figure

  • Fig. 1 High expression of hyaluronan-mediated motility receptor (HMMR) in lung adenocarcinoma (LUAD) correlates with worsened patient outcomes. (A) TCGA database analysis of HMMR expression in normal lung tissues (N = 59) versus LUAD tissues (N = 539). (B) K-M curve analysis of overall survival time in patients with high/low HMMR expression (N = 1,082/1,084). (C) qRT-PCR detection of HMMR mRNA expression in cancerous and adjacent tissues (N = 10/10). (D) qRT-PCR detection of HMMR mRNA expression in tumor tissues of stage I/II (N = 4) versus stage III/IV (N = 6) LUAD patients. (E) qRT-PCR evaluation of HMMR mRNA levels in normal human lung epithelial cells and LUAD cells (N = 3). Values are presented as mean ± SD. * signifies p < 0.05.

  • Fig. 2 High hyaluronan-mediated motility receptor (HMMR) expression enhances the stemness and drug resistance of lung adenocarcinoma (LUAD) cells. (A) si-NC and si-HMMR were transfected into PC9 lung adenocarcinoma cells, and transfection efficiency was confirmed by qRT-PCR (N = 3). (B, C) Spheroid formation detected stemness among different treatment groups (N = 3). More sphere formation represents more stemness of the cell. (D) WB examined the expression of stem cell markers CD44 and CD133. (E) The CCK-8 assay calculated the cisplatin IC50 values for each group (N = 3). Lower IC50 values indicate greater cisplatin sensitivity. (F) Apoptosis was evaluated using flow cytometry (N = 3). Values are presented as mean ± SD. WB, Western blot; PI, propidium iodide. * signifies p < 0.05.

  • Fig. 3 Hyaluronan-mediated motility receptor (HMMR) expression mediates glycolytic signaling. (A) GSEA analysis of signaling pathways enriched for genes highly associated with HMMR. (B) Pearson analysis of the correlation between HMMR and key genes of glycolysis (PKM, LDHA, SLC2A1, PDK1, MYC). A larger value means a stronger correlation. (C) WB analysis of LDHA, PDK1, and MYC protein expression in si-NC and si-HMMR groups. (D) ECAR measurement via the Seahorse XF96 Extracellular Flux Analyzer (N = 3). ECAR levels are positively correlated with glycolysis. (E) OCR measurement via the Seahorse XF96 (N = 3). OCR levels are negatively correlated with glycolysis. (F) Glucose consumption measured in cell supernatants of different groups with a specific assay kit (N = 3). (G) Lactate synthesis quantified in the cell groups with a specific assay kit (N = 3). (H) ATP yield evaluated in the cell groups with a specific assay kit (N = 3). Values are presented as mean ± SD. WB, Western blot; ECAR, extracellular acidification rate; OCR, oxygen consumption rate; 2-DG, 2-Deoxy-D-glucos. * signifies p < 0.05.

  • Fig. 4 Hyaluronan-mediated motility receptor (HMMR) enhances stemness and drug resistance of lung adenocarcinoma (LUAD) cells by promoting glycolytic metabolism. (A) Transfection of A549 cells with oe-NC and oe-HMMR, with qRT-PCR assessing transfection efficiency (N = 3). (B) Cells were divided into groups as oe-NC + PBS, oe-HMMR + PBS, oe-HMMR + 2-DG, with ECAR analyzed by the Seahorse XF96 (N = 3). (C) OCR measured with the Seahorse XF96 (N = 3). (D) Glucose consumption in supernatants of the groups assessed by a specific assay kit (N = 3). (E) Lactate production in the groups measured by an assay kit (N = 3). (F) ATP production in the groups evaluated with a specific assay kit (N = 3). (G) WB detection of HMMR and glycolysis-related protein (LDHA, PDK1, MYC) expression. (H) Spheroid formation assays for stemness in different groups of cells (N = 3). (I) WB detection of stem cell markers CD44 and CD133 expression. (J) CCK-8 assay for cisplatin IC50 in each group (N = 3). (K) Flow cytometry for apoptosis assessment in cells (N = 3). Values are presented as mean ± SD. PBS, phosphate-buffered saline; 2-DG, 2-Deoxy-D-glucos; ECAR, extracellular acidification rate; OCR, oxygen consumption rate; WB, Western blot; PI, propidium iodide. * signifies p < 0.05.


Reference

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. 2021; Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. DOI: 10.3322/caac.21660. PMID: 33538338.
Article
2. Oncology Society of Chinese Medical Association; Chinese Medical Association Publishing House. 2022; [Chinese Medical Association guideline for clinical diagnosis and treatment of lung cancer (2022 edition)]. Zhonghua Zhong Liu Za Zhi. 44:457–490. Chinese.
3. Romeo HE, Barreiro Arcos ML. 2023; Clinical relevance of stem cells in lung cancer. World J Stem Cells. 15:576–588. DOI: 10.4252/wjsc.v15.i6.576. PMID: 37424954. PMCID: PMC10324501.
Article
4. Gupta C, Jaipuria A, Gupta N. 2022; Inhalable formulations to treat non-small cell lung cancer (NSCLC): recent therapies and developments. Pharmaceutics. 15:139. DOI: 10.3390/pharmaceutics15010139. PMID: 36678768. PMCID: PMC9861595.
Article
5. Li P, Yuan H, Kuang X, Zhang T, Ma L. 2022; Network module function enrichment analysis of lung squamous cell carcinoma and lung adenocarcinoma. Medicine (Baltimore). 101:e31798. DOI: 10.1097/MD.0000000000031798. PMID: 36451444.
Article
6. Luo M, Kong D, Pei D, Jin X, Liu D. 2019; LncRNA CASC2 inhibits proliferation and migration of adenocarcinoma cells via miR-4735-3p and mTOR. J Cell Biochem. 120:7506–7515. DOI: 10.1002/jcb.28025.
Article
7. Kuribayashi K, Funaguchi N, Nakano T. 2016; Chemotherapy for advanced non-small cell lung cancer with a focus on squamous cell carcinoma. J Cancer Res Ther. 12:528–534. DOI: 10.4103/0973-1482.174185. PMID: 27461605.
Article
8. Xu Z, Hao X, Lin L, Li J, Xing P. 2021; Concurrent chemotherapy and first-generation epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) with or without an antiangiogenic agent as first-line treatment in advanced lung adenocarcinoma harboring an EGFR mutation. Thorac Cancer. 12:2233–2240. DOI: 10.1111/1759-7714.14057. PMID: 34180588.
Article
9. Ghosh S. 2019; Cisplatin: the first metal based anticancer drug. Bioorg Chem. 88:102925. DOI: 10.1016/j.bioorg.2019.102925.
Article
10. Wang L, Zhao X, Fu J, Xu W, Yuan J. 2021; The role of tumour metabolism in cisplatin resistance. Front Mol Biosci. 8:691795. DOI: 10.3389/fmolb.2021.691795. PMID: 34250022.
Article
11. Zhang X, Zhao H, Li Y, Xia D, Yang L, Ma Y, Li H. 2018; The role of YAP/TAZ activity in cancer metabolic reprogramming. Mol Cancer. 17:134. DOI: 10.1186/s12943-018-0882-1. PMCID: PMC6122186.
Article
12. Pekel G, Ari F. 2020; Therapeutic targeting of cancer metabolism with triosephosphate isomerase. Chem Biodivers. 17:e2000012. DOI: 10.1002/cbdv.202000012. PMID: 32180338.
Article
13. Wang J, Zhang HM, Dai ZT, Huang Y, Liu H, Chen Z, Wu Y, Liao XH. 2022; MKL-1-induced PINK1-AS overexpression contributes to the malignant progression of hepatocellular carcinoma via ALDOA-mediated glycolysis. Sci Rep. 12:21283. DOI: 10.1038/s41598-022-24023-w. PMID: 36494481. PMCID: PMC9734095.
Article
14. Zhou B, Lei JH, Wang Q, Qu TF, Cha LC, Zhan HX, Liu SL, Hu X, Sun CD, Cao JY, Qiu FB, Guo WD. 2022; LINC00960 regulates cell proliferation and glycolysis in pancreatic cancer through the miR-326-3p/TUFT1/AKT-mTOR axis. Kaohsiung J Med Sci. 38:1155–1167. DOI: 10.1002/kjm2.12594.
Article
15. Ye T, Liang Y, Zhang D, Zhang X. 2021; Corrigendum: MicroRNA-16-1-3p represses breast tumor growth and metastasis by inhibiting PGK1-mediated Warburg effect. Front Cell Dev Biol. 9:649787. DOI: 10.3389/fcell.2021.649787. PMID: 33553193. PMCID: PMC7861198.
Article
16. Ye T, Liang Y, Zhang D, Zhang X. 2020; MicroRNA-16-1-3p represses breast tumor growth and metastasis by inhibiting PGK1-mediated Warburg effect. Front Cell Dev Biol. 8:615154. DOI: 10.3389/fcell.2020.615154. PMID: 33344462.
Article
17. Lin J, Xia L, Oyang L, Liang J, Tan S, Wu N, Yi P, Pan Q, Rao S, Han Y, Tang Y, Su M, Luo X, Yang Y, Chen X, Yang L, Zhou Y, Liao Q. 2022; The POU2F1-ALDOA axis promotes the proliferation and chemoresistance of colon cancer cells by enhancing glycolysis and the pentose phosphate pathway activity. Oncogene. 41:1024–1039. DOI: 10.1038/s41388-021-02148-y. PMID: 34997215. PMCID: PMC8837540.
Article
18. Wang D, Zhang P, Liu Z, Xing' Y, Xiao Y. 2022; NXPH4 promotes gemcitabine resistance in bladder cancer by enhancing reactive oxygen species and glycolysis activation through modulating NDUFA4L2. Cancers (Basel). 14:3782. DOI: 10.3390/cancers14153782. PMID: 35954445. PMCID: PMC9367313.
Article
19. Enemark MB, Hybel TE, Madsen C, Lauridsen KL, Honoré B, Plesner TL, Hamilton-Dutoit S, d'Amore F, Ludvigsen M. 2022; Tumor-tissue expression of the hyaluronic acid receptor RHAMM predicts histological transformation in follicular lymphoma patients. Cancers (Basel). 14:1316. DOI: 10.3390/cancers14051316. PMID: 35267625. PMCID: PMC8909114.
Article
20. He Z, Mei L, Connell M, Maxwell CA. 2020; Hyaluronan mediated motility receptor (HMMR) encodes an evolutionarily conserved homeostasis, mitosis, and meiosis regulator rather than a hyaluronan receptor. Cells. 9:819. DOI: 10.3390/cells9040819. PMID: 32231069. PMCID: PMC7226759.
Article
21. Zhang H, Li L, Wang D. 2022; Increased expression of HMMR in renal cell carcinoma is an independent prognostic factor. Oncol Lett. 25:28. DOI: 10.3892/ol.2022.13614.
Article
22. Shabir A, Qayoom H, Haq BU, Abo Mansoor A, Abdelrahim A, Ahmad I, Almilabairy A, Ahmad F, Mir MA. 2024; Exploring HMMR as a therapeutic frontier in breast cancer treatment, its interaction with various cell cycle genes, and targeting its overexpression through specific inhibitors. Front Pharmacol. 15:1361424. Erratum in: Front Pharmacol. 2024;15:1443537. DOI: 10.3389/fphar.2024.1361424. PMID: 38576486. PMCID: PMC10991682.
Article
23. Wang Q, Wu G, Fu L, Li Z, Wu Y, Zhu T, Yu G. 2023; Tumor-promoting roles of HMMR in lung adenocarcinoma. Mutat Res. 826:111 811. DOI: 10.1016/j.mrfmmm.2022.111811. PMID: 36603370.
Article
24. Ma X, Xie M, Xue Z, Yao J, Wang Y, Xue X, Wang J. 2022; HMMR associates with immune infiltrates and acts as a prognostic biomaker in lung adenocarcinoma. Comput Biol Med. 151:106213. DOI: 10.1016/j.compbiomed.2022.106213. PMID: 36306573.
Article
25. Li Z, Fei H, Lei S, Hao F, Yang L, Li W, Zhang L, Fei R. 2021; Identification of HMMR as a prognostic biomarker for patients with lung adenocarcinoma via integrated bioinformatics analysis. PeerJ. 9:e12624. DOI: 10.7717/peerj.12624. PMID: 35036134. PMCID: PMC8710063.
26. Tilghman J, Wu H, Sang Y, Shi X, Guerrero-Cazares H, Quinones-Hinojosa A, Eberhart CG, Laterra J, Ying M. 2014; HMMR maintains the stemness and tumorigenicity of glioblastoma stem-like cells. Cancer Res. 74:3168–3179. DOI: 10.1158/0008-5472.CAN-13-2103. PMID: 24710409. PMCID: PMC4059010.
Article
27. Hinneh JA, Gillis JL, Mah CY, Irani S, Shrestha RK, Ryan NK, Atsushi E, Nassar ZD, Lynn DJ, Selth LA, Kato M, Centenera MM, Butler LM. 2023; Targeting hyaluronan-mediated motility receptor (HMMR) enhances response to androgen receptor signalling inhibitors in prostate cancer. Br J Cancer. 129:1350–1361. DOI: 10.1038/s41416-023-02406-8. PMCID: PMC10575850.
Article
28. Rong H, Chen B, Wei X, Peng J, Ma K, Duan S, He J. 2020; Long non-coding RNA XIST expedites lung adenocarcinoma progression through upregulating MDM2 expression via binding to miR-363-3p. Thorac Cancer. 11:659–671. DOI: 10.1111/1759-7714.13310. PMID: 31968395. PMCID: PMC7049521.
Article
29. Han X, Han Y, Tan Q, Huang Y, Yang J, Yang S, He X, Zhou S, Song Y, Pi J, Zuo L, Yao J, Wu D, Zhang Z, Shi Y. 2019; Tracking longitudinal genetic changes of circulating tumor DNA (ctDNA) in advanced lung adenocarcinoma treated with chemotherapy. J Transl Med. 17:339. DOI: 10.1186/s12967-019-2087-9. PMID: 31597567.
Article
30. Jiang K, Lin G, Zheng X, Zheng X, Long F. 2022; The comparison of chemotherapy and treatments according to NGS results in advanced lung adenocarcinoma patients resistant to EGFR-TKIs. J Clin Oncol. 40:e21082–e21082. DOI: 10.1200/JCO.2022.40.16_suppl.e21082.
Article
31. Li J, Kou Y, Zhang X, Xiao X, Ou Y, Cao L, Guo M, Qi C, Wang Z, Liu Y, Shuai Q, Wang H, Yang S. 2022; Biochanin A inhibits lung adenocarcinoma progression by targeting ZEB1. Discov Oncol. 13:138. DOI: 10.1007/s12672-022-00601-2. PMID: 36512117. PMCID: PMC9748019.
Article
32. Ye S, Liu Y, Fuller AM, Katti R, Ciotti GE, Chor S, Alam MZ, Devalaraja S, Lorent K, Weber K, Haldar M, Pack MA, Eisinger-Mathason TSK. 2020; TGFβ and hippo pathways cooperate to enhance sarcomagenesis and metastasis through the hyaluronan-mediated motility receptor (HMMR). Mol Cancer Res. 18:560–573. DOI: 10.1158/1541-7786.MCR-19-0877. PMID: 31988250.
Article
33. Yang M, Chen B, Kong L, Chen X, Ouyang Y, Bai J, Yu D, Zhang H, Li X, Zhang D. 2022; HMMR promotes peritoneal implantation of gastric cancer by increasing cell-cell interactions. Discov Oncol. 13:81. DOI: 10.1007/s12672-022-00543-9. PMID: 36002694. PMCID: PMC9402864.
Article
34. Jiang X, Tang L, Yuan Y, Wang J, Zhang D, Qian K, Cho WC, Duan L. 2022; NcRNA-mediated high expression of HMMR as a prognostic biomarker correlated with cell proliferation and cell migration in lung adenocarcinoma. Front Oncol. 12:846536. DOI: 10.3389/fonc.2022.846536. PMID: 35311097. PMCID: PMC8927766.
Article
35. Li W, Pan T, Jiang W, Zhao H. 2020; HCG18/miR-34a-5p/HMMR axis accelerates the progression of lung adenocarcinoma. Biomed Pharmacother. 129:110217. DOI: 10.1016/j.biopha.2020.110217. PMID: 32559619.
Article
36. Wang L, Zhai D, Tang L, Zhang H, Wang X, Ma N, Zhang X, Cheng M, Shen R. 2024; FOXM1 mediates methotrexate resistance in osteosarcoma cells by promoting autophagy. Acta Biochim Biophys Sin (Shanghai). 56:1289–1299. DOI: 10.3724/abbs.2024084. PMID: 39086352. PMCID: PMC11532242.
Article
37. Zhang H, Ren L, Ding Y, Li F, Chen X, Ouyang Y, Zhang Y, Zhang D. 2019; Hyaluronan-mediated motility receptor confers resistance to chemotherapy via TGFβ/Smad2-induced epithelial-mesenchymal transition in gastric cancer. FASEB J. 33:6365–6377. DOI: 10.1096/fj.201802186R.
Article
38. Naik PP, Panigrahi S, Parida R, Praharaj PP, Bhol CS, Patil S, Manjunath N, Ghosh D, Patra SK, Bhutia SK. 2022; Metabostemness in cancer: linking metaboloepigenetics and mitophagy in remodeling cancer stem cells. Stem Cell Rev Rep. 18:198–213. DOI: 10.1007/s12015-021-10216-9. PMID: 34355273.
Article
39. Parte SC, Batra SK, Kakar SS. 2018; Characterization of stem cell and cancer stem cell populations in ovary and ovarian tumors. J Ovarian Res. 11:69. DOI: 10.1186/s13048-018-0439-3. PMCID: PMC6098829.
Article
40. Lai J, Lin X, Zheng H, Xie B, Fu D. 2023; Characterization of stemness features and construction of a stemness subtype classifier to predict survival and treatment responses in lung squamous cell carcinoma. BMC Cancer. 23:525. DOI: 10.1186/s12885-023-10918-y. PMID: 37291533.
Article
41. Sheng X, Li Y, Li Y, Liu W, Lu Z, Zhan J, Xu M, Chen L, Luo X, Cai G, Zhang S. 2019; PLOD2 contributes to drug resistance in laryngeal cancer by promoting cancer stem cell-like characteristics. BMC Cancer. 19:840. DOI: 10.1186/s12885-019-6029-y. PMID: 31455288. PMCID: PMC6712771.
Article
42. Wu C, Zheng C, Chen S, He Z, Hua H, Sun C, Yu C. 2023; FOXQ1 promotes pancreatic cancer cell proliferation, tumor stemness, invasion and metastasis through regulation of LDHA-mediated aerobic glycolysis. Cell Death Dis. 14:699. DOI: 10.1038/s41419-023-06207-y. PMID: 37875474. PMCID: PMC10598070.
Article
43. Cao X, Cao Y, Zhao H, Wang P, Zhu Z. 2023; Prolyl 4-hydroxylase P4HA1 mediates the interplay between glucose metabolism and stemness in pancreatic cancer cells. Curr Stem Cell Res Ther. 18:712–719. DOI: 10.2174/1574888X17666220827113434. PMID: 36043766.
Article
44. Kang X, Chen J, Hou JF. 2022; HSP90 facilitates stemness and enhances glycolysis in glioma cells. BMC Neurol. 22:420. DOI: 10.1186/s12883-022-02924-7. PMID: 36368999. PMCID: PMC9650859.
Article
45. Ma L, Zong X. 2020; Metabolic symbiosis in chemoresistance: refocusing the role of aerobic glycolysis. Front Oncol. 10:5. DOI: 10.3389/fonc.2020.00005. PMID: 32038983. PMCID: PMC6992567.
Article
46. Huang Y, Zhao W, Ouyang X, Wu F, Tao Y, Shi M. 2021; Monoamine oxidase A inhibits lung adenocarcinoma cell proliferation by abrogating aerobic glycolysis. Front Oncol. 11:645821. DOI: 10.3389/fonc.2021.645821. PMID: 33763378. PMCID: PMC7982599.
Article
47. Liu P, Sun SJ, Ai YJ, Feng X, Zheng YM, Gao Y, Zhang JY, Zhang L, Sun YP, Xiong Y, Lin M, Yuan HX. 2022; Elevated nuclear localization of glycolytic enzyme TPI1 promotes lung adenocarcinoma and enhances chemoresistance. Cell Death Dis. 13:205. DOI: 10.1038/s41419-022-04655-6. PMID: 35246510. PMCID: PMC8897412.
Article
48. Gong T, Cui L, Wang H, Wang H, Han N. 2018; Knockdown of KLF5 suppresses hypoxia-induced resistance to cisplatin in NSCLC cells by regulating HIF-1α-dependent glycolysis through inactivation of the PI3K/Akt/mTOR pathway. J Transl Med. 16:164. DOI: 10.1186/s12967-018-1543-2. PMCID: PMC6000925.
Article
49. He S, Ma X, Zheng N, Wang G, Wang M, Xia W, Yu D. 2021; PRDM14 mediates chemosensitivity and glycolysis in drugresistant A549/cisplatin cells and their progenitor A549 human lung adenocarcinoma cells. Mol Med Rep. 23:149. DOI: 10.3892/mmr.2020.11788. PMCID: PMC7789100.
Article
50. Zhang X, Huang D, Li K, Han C, Li H, Li C, Liu L. 2023; Hmmr acts as a key regulator in the ADSCs proliferation and mitosis. Stem Cell Rev Rep. 19:1937–1953. DOI: 10.1007/s12015-023-10563-9. PMID: 37222947.
Article
51. Connell M, Chen H, Jiang J, Kuan CW, Fotovati A, Chu TL, He Z, Lengyell TC, Li H, Kroll T, Li AM, Goldowitz D, Frappart L, Ploubidou A, Patel MS, Pilarski LM, Simpson EM, Lange PF, Allan DW, Maxwell CA. 2017; HMMR acts in the PLK1-dependent spindle positioning pathway and supports neural development. Elife. 6:e28672. DOI: 10.7554/eLife.28672. PMID: 28994651. PMCID: PMC5681225.
Article
52. Chen YJ, Tseng SC, Chen PT, Hwang E. 2024; The non-mitotic role of HMMR in regulating the localization of TPX2 and the dynamics of microtubules in neurons. Elife. 13:RP94547. DOI: 10.7554/eLife.94547. PMID: 38904660.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr