1. Yang Y, Ruan Z, Wang X, Yang Y, Mason TG, Lin H, Tian L. Short-term and long-term exposures to fine particulate matter constituents and health: a systematic review and meta-analysis. Environ Pollut. 2019; 247:874–882. PMID:
30731313.
Article
2. Yang WK, Lyu YR, Kim SH, Chae SW, Kim KM, Jung IC, Park YC. Protective effect of GHX02 extract on particulate matter-induced lung injury. J Med Food. 2020; 23:611–632. PMID:
32316823.
Article
3. Wang J, Li M, Geng Z, Khattak S, Ji X, Wu D, Dang Y. Role of oxidative stress in retinal disease and the early intervention strategies: a review. Oxid Med Cell Longev. 2022; 2022:7836828. PMID:
36275903.
Article
4. Li Z, Tian F, Ban H, Xia S, Cheng L, Ren X, Lyu Y, Zheng J. Energy metabolism disorders and oxidative stress in the SH-SY5Y cells following PM
2.5 air pollution exposure. Toxicol Lett. 2022; 369:25–33. PMID:
36007723.
Article
5. Somayajulu M, Ekanayaka S, McClellan SA, Bessert D, Pitchaikannu A, Zhang K, Hazlett LD. Airborne particulates affect corneal homeostasis and immunity. Invest Ophthalmol Vis Sci. 2020; 61:23.
Article
6. Zhu S, Gong L, Li Y, Xu H, Gu Z, Zhao Y. Safety assessment of nanomaterials to eyes: an important but neglected issue. Adv Sci (Weinh). 2019; 6:1802289. PMID:
31453052.
Article
7. Yumnamcha T, Devi TS, Singh LP. Auranofin mediates mitochondrial dysregulation and inflammatory cell death in human retinal pigment epithelial cells: Implications of retinal neurodegenerative diseases. Front Neurosci. 2019; 13:1065. PMID:
31649499.
Article
8. Gelat B, Rathaur P, Malaviya P, Patel B, Trivedi K, Johar K, Gelat R. The intervention of epithelial-mesenchymal transition in homeostasis of human retinal pigment epithelial cells: a review. J Histotechnol. 2022; 45:148–160. PMID:
36377481.
Article
9. Shu DY, Butcher E, Saint-Geniez M. EMT and EndMT: emerging roles in age-related macular degeneration. Int J Mol Sci. 2020; 21:4271. PMID:
32560057.
Article
10. Li L, Li H, Zhang Z, Zheng J, Shi Y, Liu J, Cao Y, Yuan X, Chu Y. Recombinant truncated TGF-β receptor II attenuates carbon tetrachloride-induced epithelial-mesenchymal transition and liver fibrosis in rats. Mol Med Rep. 2018; 17:315–321. PMID:
29115426.
Article
11. Scanlon CS, Van Tubergen EA, Inglehart RC, D’Silva NJ. Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. J Dent Res. 2013; 92:114–121. PMID:
23128109.
Article
12. Zhou M, Geathers JS, Grillo SL, Weber SR, Wang W, Zhao Y, Sundstrom JM. Role of epithelial-mesenchymal transition in retinal pigment epithelium dysfunction. Front Cell Dev Biol. 2020; 8:501. PMID:
32671066.
Article
13. Tamiya S, Kaplan HJ. Role of epithelial-mesenchymal transition in proliferative vitreoretinopathy. Exp Eye Res. 2016; 142:26–31. PMID:
26675400.
Article
14. Caban M, Owczarek K, Lewandowska U. The role of metalloproteinases and their tissue inhibitors on ocular diseases: focusing on potential mechanisms. Int J Mol Sci. 2022; 23:4256. PMID:
35457074.
Article
15. Saucedo L, Pfister IB, Zandi S, Gerhardt C, Garweg JG. Ocular TGF-b, matrix metalloproteinases, and TIMP-1 increase with the development and progression of diabetic retinopathy in type 2 diabetes mellitus. Mediators Inflamm. 2021; 2021:9811361. PMID:
34257518.
16. Runa F, Ortiz-Soto G, de Barros NR, Kelber JA. Targeting SMAD-dependent signaling: considerations in epithelial and mesenchymal solid tumors. Pharmaceuticals (Basel). 2024; 17:326. PMID:
38543112.
Article
17. Nady ME, Abd El-Raouf OM, El-Sayed EM. Linagliptin mitigates TGF-β1 mediated epithelial-mesenchymal transition in tacrolimus-induced renal interstitial fibrosis
via Smad/ERK/P38 and HIF-1a/LOXL2 signaling pathways. Biol Pharm Bull. 2024; 47:1008–1020. PMID:
38797693.
Article
18. Lin HW, Shen TJ, Chen PY, Chen TC, Yeh JH, Tsou SC, Lai CY, Chen CH, Chang YY. Particulate matter 2.5 exposure induces epithelial-mesenchymal transition
via PI3K/AKT/mTOR pathway in human retinal pigment epithelial ARPE-19 cells. Biochem Biophys Res Commun. 2022; 617:11–17. PMID:
35689837.
Article
19. Lee H, Hwang-Bo H, Ji SY, Kim MY, Kim SY, Park C, Hong SH, Kim GY, Song KS, Hyun JW, et al. Diesel particulate matter2.5 promotes epithelial-mesenchymal transition of human retinal pigment epithelial cells via generation of reactive oxygen species. Environ Pollut. 2020; 262:114301. PMID:
32155554.
Article
20. Kusman IT, Pradini GW, Ma’ruf IF, Fauziah N, Berbudi A, Achadiyani A, Wiraswati HL. The potentials of
Ageratum conyzoides and other plants from
Asteraceae as an antiplasmodial and insecticidal for malaria vector: an article review. Infect Drug Resist. 2023; 16:7109–7138. PMID:
37954507.
21. Salehi B, Valussi M, Morais-Braga MF, Carneiro JN, Leal AL, Coutinho HD, Vitalini S, Kręgiel D, Antolak H, Sharifi-Rad M, et al.
Tagetes spp. essential oils and other extracts: chemical characterization and biological activity. Molecules. 2018; 23:2847. PMID:
30388858.
Article
22. Sanjaya SS, Park MH, Karunarathne WA, Lee KT, Choi YH, Kang CH, Lee MH, Jung MJ, Ryu HW, Kim GY. Inhibition of α-melanocyte-stimulating hormone-induced melanogenesis and molecular mechanisms by polyphenol-enriched fraction of Tagetes erecta L. flower. Phytomedicine. 2024; 126:155442. PMID:
38394730.
Article
23. Wang X, Liu X, Wang X, Wang H, Zhang LH, Yu H, Yang W, Wu HH. Carotenoid-derived norsesquiterpenoids and sesquiterpenoids from
Tagetes erecta L. Phytochemistry. 2023; 215:113860. PMID:
37714249.
24. Lee H, Hwangbo H, Hyun JW, Shim JH, Leem SH, Kim GY, Choi YH. Ameliorative effects of
Tagetes erecta Linn. flower against desiccation stress-induced dry eye symptoms in the mice model. Integr Med Res. 2024; 13:101038. PMID:
38716164.
25. Gao P, Duan W, Shi H, Wang Q. Silencing circPalm2 inhibits sepsis-induced acute lung injury by sponging miR-376b-3p and targeting MAP3K1. Toxicol Res. 2023; 39:275–294. PMID:
37008689.
Article
26. Karima G, Shin K, Jeong J, Choi D, Hwang KG, Hong JW. Stem cell oriented exosomes regulate cell proliferation in hepatoma carcinoma. Biotechnol Bioprocess Eng; BBE. 2023; 28:263–273.
Article
27. Jeon SJ, Jung GH, Choi EY, Han EJ, Lee JH, Han SH, Woo JS, Jung SH, Jung JY. Kaempferol induces apoptosis through the MAPK pathway and regulates JNK-mediated autophagy in MC-3 cells. Toxicol Res. 2023; 40:45–55. PMID:
38223666.
Article
28. Hwangbo H, Park C, Bang E, Kim HS, Bae SJ, Kim E, Jung Y, Leem SH, Seo YR, Hong SH, et al. Morroniside protects C2C12 myoblasts from oxidative damage caused by ROS-mediated mitochondrial damage and induction of endoplasmic reticulum Stress. Biomol Ther (Seoul). 2024; 32:349–360. PMID:
38602043.
Article
29. Park C, Kim DH, Kim TH, Jeong SU, Yoon JH, Moon SK, Kwon CY, Park SH, Hong SH, Shim JH, et al. Improvement of oxidative stress-induced cytotoxicity of
Angelica keiskei (Miq.) Koidz. leaves extract through activation of heme oxygenase-1 in C2C12 murine myoblasts. Biotechnol Bioprocess Eng; BBE. 2023; 28:51–62.
Article
30. Nguyen UT, Hsieh HY, Chin TY, Wu G, Lin YP, Lee CY, Hsu YC, Fan YJ. Evaluation of Pm2.5 influence on human lung cancer cells using a microfluidic platform. Int J Med Sci. 2024; 21:1117–1128. PMID:
38774761.
Article
31. Zhang J, Xu X, Liang Y, Wu X, Qian Z, Zhang L, Wang T. Particulate matter promotes the epithelial to mesenchymal transition in human lung epithelial cells
via the ROS pathway. Am J Transl Res. 2023; 15:5159–5167. PMID:
37692935.
32. Shin TH, Kim SG, Ji M, Kwon DH, Hwang JS, George NP, Ergando DS, Park CB, Paik MJ, Lee G. Diesel-derived PM
2.5 induces impairment of cardiac movement followed by mitochondria dysfunction in cardiomyocytes. Front Endocrinol (Lausanne). 2022; 13:999475. PMID:
36246901.
Article
33. Molavinia S, Dayer D, Khodayar MJ, Goudarzi G, Salehcheh M. Suspended particulate matter promotes epithelial-to-mesenchymal transition in alveolar epithelial cells
via TGF-β1-mediated ROS/IL-8/SMAD3 axis. J Environ Sci (China). 2024; 141:139–150. PMID:
38408815.
Article
34. Li J, Zeng G, Zhang Z, Wang Y, Shao M, Li C, Lu Z, Zhao Y, Zhang F, Ding W. Urban airborne PM
2.5 induces pulmonary fibrosis through triggering glycolysis and subsequent modification of histone lactylation in macrophages. Ecotoxicol Environ Saf. 2024; 273:116162. PMID:
38458067.
35. Liu D, Zhang C, Zhang J, Xu GT, Zhang J. Molecular pathogenesis of subretinal fibrosis in neovascular AMD focusing on epithelial-mesenchymal transformation of retinal pigment epithelium. Neurobiol Dis. 2023; 185:106250. PMID:
37536385.
Article
36. He X, Zhang L, Hu L, Liu S, Xiong A, Wang J, Xiong Y, Li G. PM2.5 aggravated OVA-induced epithelial tight junction disruption through Fas associated
via death domain-dependent apoptosis in asthmatic mice. J Asthma Allergy. 2021; 14:1411–1423. PMID:
34848976.
37. Lee JH, Massagué J. TGF-β in developmental and fibrogenic EMTs. Semin Cancer Biol. 2022; 86:136–145. PMID:
36183999.
Article
38. Avila-Carrasco L, Majano P, Sánchez-Toméro JA, Selgas R, López-Cabrera M, Aguilera A, González Mateo G. Natural plants compounds as modulators of epithelial-to-mesenchymal transition. Front Pharmacol. 2019; 10:715. PMID:
31417401.
Article
39. Markitantova Y, Simirskii V. Endogenous and exogenous regulation of redox homeostasis in retinal pigment epithelium cells: an updated antioxidant perspective. Int J Mol Sci. 2023; 24:10776. PMID:
37445953.
Article
40. Hsueh YJ, Chen YN, Tsao YT, Cheng CM, Wu WC, Chen HC. The pathomechanism, antioxidant biomarkers, and treatment of oxidative stress-related eye diseases. Int J Mol Sci. 2022; 23:1255. PMID:
35163178.
Article
41. Maurya M, Bora K, Blomfield AK, Pavlovich MC, Huang S, Liu CH, Chen J. Oxidative stress in retinal pigment epithelium degeneration: from pathogenesis to therapeutic targets in dry age-related macular degeneration. Neural Regen Res. 2023; 18:2173–2181. PMID:
37056126.
Article
42. Buonfiglio F, Böhm EW, Pfeiffer N, Gericke A. Oxidative stress: a suitable therapeutic target for optic nerve diseases? Antioxidants. 2023; 12:1465. PMID:
37508003.
Article
43. Cicevan R, Sestras AF, Plazas M, Boscaiu M, Vilanova S, Gramazio P, Vicente O, Prohens J, Sestras RE. Biological traits and genetic relationships amongst cultivars of three species of
Tagetes (Asteraceae). Plants. 2022; 11:760. PMID:
35336643.
Article
44. Garcia-Oliveira P, Barral M, Carpena M, Gullón P, Fraga-Corral M, Otero P, Prieto MA, Simal-Gandara J. Traditional plants from Asteraceae family as potential candidates for functional food industry. Food Funct. 2021; 12:2850–2873. PMID:
33683253.
Article
45. Shahane K, Kshirsagar M, Tambe S, Jain D, Rout S, Ferreira MK, Mali S, Amin P, Srivastav PP, Cruz J, et al. An updated review on the multifaceted therapeutic potential of
Calendula officinalis L. Pharmaceuticals (Basel). 2023; 16:611. PMID:
37111369.
Article
46. Madhavan J, Chandrasekharan S, Priya MK, Godavarthi A. Modulatory effect of carotenoid supplement constituting lutein and zeaxanthin (10:1) on anti-oxidant enzymes and macular pigments level in rats. Pharmacogn Mag. 2018; 14:268–274. PMID:
29720843.
Article
47. Rivas-García L, Crespo-Antolín L, Forbes-Hernández TY, Romero-Márquez JM, Navarro-Hortal MD, Arredondo M, Llopis J, Quiles JL, Sánchez-González C. Bioactive properties of
Tagetes erecta edible flowers: polyphenol and antioxidant characterization and therapeutic activity against ovarian tumoral cells and
Caenorhabditis elegans tauopathy. Int J Mol Sci. 2023; 25:280. PMID:
38203451.
Article
48. Meurer MC, Mees M, Mariano LN, Boeing T, Somensi LB, Mariott M, da Silva RC, Dos Santos AC, Longo B, Santos França TC, et al. Hydroalcoholic extract of
Tagetes erecta L. flowers, rich in the carotenoid lutein, attenuates inflammatory cytokine secretion and improves the oxidative stress in an animal model of ulcerative colitis. Nutr Res. 2019; 66:95–106. PMID:
30979660.
Article
49. Yan R, Ma D, Liu Y, Wang R, Fan L, Yan Q, Chen C, Wang W, Ren Z, Ku T, et al. Developmental toxicity of fine particulate matter: multifaceted exploration from epidemiological and laboratory perspectives. Toxics. 2024; 12:274. PMID:
38668497.
Article
50. Garcia A, Santa-Helena E, De Falco A, de Paula Ribeiro J, Gioda A, Gioda CR. Toxicological effects of fine particulate matter (PM2.5): health risks and associated systemic injuries-systematic review. Water Air Soil Pollut. 2023; 234:346. PMID:
37250231.
Article
51. Zhou Z, Zhang YY, Xin R, Huang XH, Li YL, Dong X, Zhou D, Zhu B, Qin L. Metal ion-mediated pro-oxidative reactions of different lipid molecules: revealed by nontargeted lipidomic approaches. J Agric Food Chem. 2022; 70:10284–10295. PMID:
35944096.
Article
52. Qiao Y, Ma L. Quantification of metal ion induced DNA damage with single cell array based assay. Analyst (Lond). 2013; 138:5713–5718. PMID:
23892322.
Article
53. Bridgewater JD, Lim J, Vachet RW. Using metal-catalyzed oxidation reactions and mass spectrometry to identify amino acid residues within 10 A of the metal in Cu-binding proteins. J Am Soc Mass Spectrom. 2006; 17:1552–1559. PMID:
16872838.
Article
54. Yin H, Li X, Wang C, Li X, Liu J. Nickel induces mitochondrial damage in renal cells
in vitro and
in vivo through its effects on mitochondrial biogenesis, fusion, and fission. Chem Biol Interact. 2024; 394:110975. PMID:
38552765.
55. Das DN, Ravi N. Influences of polycyclic aromatic hydrocarbon on the epigenome toxicity and its applicability in human health risk assessment. Environ Res. 2022; 213:113677. PMID:
35714684.
Article
56. Kim DH, Lee H, Hwangbo H, Kim SY, Ji SY, Kim MY, Park SK, Park SH, Kim MY, Kim GY, et al. Particulate matter 2.5 promotes inflammation and cellular dysfunction
via reactive oxygen species/p38 MAPK pathway in primary rat corneal epithelial cells. Cutan Ocul Toxicol. 2022; 41:273–284. PMID:
36097682.
Article
57. Wang B, Chan YL, Li G, Ho KF, Anwer AG, Smith BJ, Guo H, Jalaludin B, Herbert C, Thomas PS, et al. Maternal particulate matter exposure impairs lung health and is associated with mitochondrial damage. Antioxidants. 2021; 10:1029. PMID:
34202305.
Article
58. Huang X, Gao W, Yun X, Qing Z, Zeng J. Effect of natural antioxidants from marigolds (
Tagetes erecta L.) on the oxidative stability of soybean oil. Molecules. 2022; 27:2865. PMID:
35566214.
Article
59. Burlec AF, Pecio Ł, Kozachok S, Mircea C, Corciovă A, Vereștiuc L, Cioancă O, Oleszek W, Hăncianu M. Phytochemical profile, antioxidant activity, and cytotoxicity assessment of
tagetes erecta L. flowers. Molecules. 2021; 26:1201. PMID:
33668106.
Article
60. Fujisaki H, Futaki S. Epithelial-mesenchymal transition induced in cancer cells by adhesion to type I collagen. Int J Mol Sci. 2022; 24:198. PMID:
36613638.
Article
61. Amack JD. Cellular dynamics of EMT: lessons from live
in vivo imaging of embryonic development. Cell Commun Signal. 2021; 19:79. PMID:
34294089.
62. Blake B, Ozdemir T. Developing fibrous biomaterials to modulate epithelial-to-mesenchymal transition. Cells Tissues Organs. 2023; 212:416–438. PMID:
37071982.
63. Jayachandran J, Srinivasan H, Mani KP. Molecular mechanism involved in epithelial to mesenchymal transition. Arch Biochem Biophys. 2021; 710:108984. PMID:
34252392.
Article
64. Shu DY, Chaudhary S, Cho KS, Lennikov A, Miller WP, Thorn DC, Yang M, McKay TB. Role of oxidative stress in ocular diseases: a balancing act. Metabolites. 2023; 13:187. PMID:
36837806.
Article
65. Agraval H, Kandhari K, Yadav UC. MMPs as potential molecular targets in epithelial-to-mesenchymal transition driven COPD progression. Life Sci. 2024; 352:122874. PMID:
38942362.
Article
66. Sarrand J, Soyfoo MS. Involvement of epithelial-mesenchymal transition (EMT) in autoimmune diseases. Int J Mol Sci. 2023; 24:14481. PMID:
37833928.
Article
67. Xu Z, Ding W, Deng X. PM2.5, Fine particulate matter: a novel player in the epithelial-mesenchymal transition? Front Physiol. 2019; 10:1404. PMID:
31849690.
Article
68. Hao Y, Baker D, Ten Dijke P. TGF-b-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci. 2019; 20:2767. PMID:
31195692.
69. Ding S, Jiang J, Zhang G, Yu M, Zheng Y. Ambient particulate matter exposure plus chronic ethanol ingestion exacerbates hepatic fibrosis by triggering the mitochondrial ROS-ferroptosis signaling pathway in mice. Ecotoxicol Environ Saf. 2023; 256:114897. PMID:
37043943.
Article
70. Yu D, Cai W, Shen T, Wu Y, Ren C, Li T, Hu C, Zhu M, Yu J. PM
2.5 exposure increases dry eye disease risks through corneal epithelial inflammation and mitochondrial dysfunctions. Cell Biol Toxicol. 2023; 39:2615–2630. PMID:
36786954.
Article