Lab Anim Res.  2025 Mar;41(1):81-92. 10.1186/s42826-025-00235-9.

An animal model of severe acute respiratory distress syndrome for translational research

Affiliations
  • 1Division of Chest Medicine, Department of Internal Medicine, Kaohsiung Vet‑ erans General Hospital, Kaohsiung, Taiwan, ROC
  • 2School of Medicine, College of Medicine, National Sun Yat-Sen University, No. 70, Lienhai Rd., Kaohsiung, Taiwan, ROC
  • 3School of Nursing, Fooyin University, Kaohsiung, Taiwan, ROC
  • 4Department of Nursing, Shu-Zen Junior College of Medicine and Manage‑ ment, Kaohsiung, Taiwan, ROC
  • 5Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
  • 6Department of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li‑Nung Street, Taipei, Taiwan, ROC

Abstract

Background
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine. Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within seven days after the injury, we found that arterial blood oxygen saturation ­(SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen ­(PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide ­(PaCO2 ) amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.

Keyword

Acute respiratory distress syndrome (ARDS); Animal model; Acute lung injury; Arterial oxygen saturation (SpO2 ); Partial arterial pressure of oxygen ­(PaO2 ); Cytokine storm; Cell infiltration
Full Text Links
  • LAR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr