1. Cheng BC, Zhou XP, Zhu Q, Gong S, Qin ZH, Reid PF, et al. 2009; Cobratoxin inhibits pain-evoked discharge of neurons in thalamic parafascicular nucleus in rats: involvement of cholinergic and serotonergic systems. Toxicon. 54:224–32. DOI:
10.1016/j.toxicon.2009.04.007. PMID:
19375445.
Article
2. Diochot S, Baron A, Salinas M, Douguet D, Scarzello S, Dabert-Gay AS, et al. 2012; Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature. 490:552–5. DOI:
10.1038/nature11494. PMID:
23034652.
Article
3. Zhang Y, Jiang B, Li W, Zhou C, Ji F, Xie Q, et al. 2010; Mechanisms of analgesic action of Gln49-PLA(2) from Gloydius ussurensis snake venom. Appl Biochem Biotechnol. 160:773–9. DOI:
10.1007/s12010-009-8573-4. PMID:
19277489.
Article
4. Darbinyan AA, Parseghyan LM, Moghrovyan AV, Babajanyan MA, Voskanyan AV. 2023; The transition of pain into anesthesia - the effect of various doses of
Macrovipera lebetina obtusa venom. Neurochem J. 17:662–7. DOI:
10.1134/S1819712423040098.
5. Moghrovyan A, Sahakyan N, Babayan A, Chichoyan N, Petrosyan M, Trchounian A. 2019; Essential oil and ethanol extract of oregano (Origanum vulgare L.) from Armenian flora as a natural source of terpenes, flavonoids and other phytochemicals with antiradical, antioxidant, metal chelating, tyrosinase inhibitory and antibacterial activity. Curr Pharm Des. 25:1809–16. DOI:
10.2174/1381612825666190702095612. PMID:
31267860.
Article
6. Fidyt K, Fiedorowicz A, Strządała L, Szumny A. 2016; β-caryophyllene and β-caryophyllene oxide-natural compounds of anticancer and analgesic properties. Cancer Med. 5:3007–17. DOI:
10.1002/cam4.816. PMID:
27696789. PMCID:
PMC5083753.
7. Moghrovyan A, Parseghyan L, Sevoyan G, Darbinyan A, Sahakyan N, Gaboyan M, et al. 2022; Antinociceptive, anti-inflammatory, and cytotoxic properties of
Origanum vulgare essential oil, rich with β-caryophyllene and β-caryophyllene oxide. Korean J Pain. 35:140–51. DOI:
10.3344/kjp.2022.35.2.140. PMID:
35354677. PMCID:
PMC8977206.
Article
8. Prawang A, Chanjamlong N, Rungwara W, Santimaleeworagun W, Paiboonvong T, Manapattanasatein T, et al. 2022; Combination therapy versus monotherapy in the treatment of
Stenotrophomonas maltophilia infections: a systematic review and meta-analysis. Antibiotics (Basel). 11:1788. DOI:
10.3390/antibiotics11121788. PMID:
36551445. PMCID:
PMC9774194.
Article
9. Sanz L, Ayvazyan N, Calvete JJ. 2008; Snake venomics of the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei. J Proteomics. 71:198–209. DOI:
10.1016/j.jprot.2008.05.003. PMID:
18590992.
Article
10. Kishmiryan A, Ghukasyan G, Ghulikyan L, Darbinyan A, Parseghyan L, Voskanyan A, et al. 2021; The development and evaluation of the efficacy of ovine-derived experimental antivenom immunoserum against Macrovipera lebetina obtusa (MLO) venom. J Venom Res. 11:7–15.
11. World Health Organization. 2011. Quality control methods for herbal materials. World Health Organization;p. 173.
12. Darbinyan AA, Antonyan MV, Koshatashyan HR, Gevorgyan SS, Arestakesyan HV, Karabekian ZI, et al. 2018; Changes in microglia activity of rat brain induced by
Macrovipera lebetina obtusa venom. Neurosciences. 5:41. DOI:
10.20517/2347-8659.2018.33.
Article
13. Voskanyan AV, Darbinyan AA, Parseghyan LM. 2021; Hemorrhagic changes and microglia activation induced by
Macrovipera lebetina obtusa venom with the inhibited enzymatic activity in rat brain. Toxicol Res. 38:195–204. DOI:
10.1007/s43188-021-00102-4. PMID:
35419270. PMCID:
PMC8960507.
Article
15. Hoffmann T, Klemm F, I Kichko T, Sauer SK, Kistner K, Riedl B, et al. 2022; The formalin test does not probe inflammatory pain but excitotoxicity in rodent skin. Physiol Rep. 10:e15194. DOI:
10.14814/phy2.15194.
Article
16. Santos LH, Feres CA, Melo FH, Coelho MM, Nothenberg MS, Oga S, et al. 2004; Anti-inflammatory, antinociceptive and ulcerogenic activity of a zinc-diclofenac complex in rats. Braz J Med Biol Res. 37:1205–13. DOI:
10.1590/S0100-879X2004000800011. PMID:
15273822.
Article
17. Mutalik S, Udupa N. 2004; Glibenclamide transdermal patches: physicochemical, pharmacodynamic, and pharmacokinetic evaluations. J Pharm Sci. 93:1577–94. DOI:
10.1002/jps.20058. PMID:
15124215.
Article
21. Plone MA, Emerich DF, Lindner MD. 1996; Individual differences in the hotplate test and effects of habituation on sensitivity to morphine. Pain. 66:265–70. DOI:
10.1016/0304-3959(96)03048-5. PMID:
8880849.
Article
22. Katsuyama S, Kuwahata H, Yagi T, Kishikawa Y, Komatsu T, Sakurada T, et al. 2012; Intraplantar injection of linalool reduces paclitaxel-induced acute pain in mice. Biomed Res. 33:175–81. DOI:
10.2220/biomedres.33.175. PMID:
22790217.
Article
23. Abalo R, Cabezos PA, Vera G, Fernández-Pujol R, Martín MI. 2010; The cannabinoid antagonist SR144528 enhances the acute effect of WIN 55,212-2 on gastrointestinal motility in the rat. Neurogastroenterol Motil. 22:694–e206. DOI:
10.1111/j.1365-2982.2009.01466.x. PMID:
20132133.
Article
24. Randhawa MA. 2009; Calculation of LD50 values from the method of Miller and Tainter, 1944. J Ayub Med Coll Abbottabad. 21:184–5.
25. Tsatsakis AM, Vassilopoulou L, Kovatsi L, Tsitsimpikou C, Karamanou M, Leon G, et al. 2018; The dose response principle from philosophy to modern toxicology: the impact of ancient philosophy and medicine in modern toxicology science. Toxicol Rep. 5:1107–13. DOI:
10.1016/j.toxrep.2018.10.001. PMID:
30450285. PMCID:
PMC6226566.
Article
26. Zambelli VO, Picolo G, Fernandes CAH, Fontes MRM, Cury Y. 2017; Secreted phospholipases A₂ from animal venoms in pain and analgesia. Toxins (Basel). 9:406. DOI:
10.3390/toxins9120406. PMID:
29311537. PMCID:
PMC5744126.
27. Li D, Lee Y, Kim W, Lee K, Bae H, Kim SK. 2015; Analgesic effects of bee venom derived phospholipase A(2) in a mouse model of oxaliplatin-induced neuropathic pain. Toxins (Basel). 7:2422–34. DOI:
10.3390/toxins7072422. PMID:
26131771. PMCID:
PMC4516921.
31. Takemoto Y, Kishi C, Sugiura Y, Yoshioka Y, Matsumura S, Moriyama T, et al. 2021; Distribution of inhaled volatile β-caryophyllene and dynamic changes of liver metabolites in mice. Sci Rep. 11:1728. DOI:
10.1038/s41598-021-81181-z. PMID:
33462287. PMCID:
PMC7813867.
Article
32. Mallmann MP, Mello FK, Neuberger B, da Costa Sobral KG, Fighera MR, Royes LFF, et al. 2022; Beta-caryophyllene attenuates short-term recurrent seizure activity and blood-brain-barrier breakdown after pilocarpine-induced status epilepticus in rats. Brain Res. 1784:147883. DOI:
10.1016/j.brainres.2022.147883. PMID:
35300975.
Article
33. Chavan MJ, Wakte PS, Shinde DB. 2010; Analgesic and anti-inflammatory activity of Caryophyllene oxide from Annona squamosa L. bark. Phytomedicine. 17:149–51. DOI:
10.1016/j.phymed.2009.05.016. PMID:
19576741.
Article
34. Sain S, Naoghare PK, Devi SS, Daiwile A, Krishnamurthi K, Arrigo P, et al. 2014; Beta caryophyllene and caryophyllene oxide, isolated from Aegle marmelos, as the potent anti-inflammatory agents against lymphoma and neuroblastoma cells. Antiinflamm Antiallergy Agents Med Chem. 13:45–55. DOI:
10.2174/18715230113129990016. PMID:
24484210.
Article
35. He XH, Galaj E, Bi GH, He Y, Hempel B, Wang YL, et al. 2021; β-caryophyllene, an FDA-approved food additive, inhibits methamphetamine-taking and methamphetamine-seeking behaviors possibly
via CB2 and non-CB2 receptor mechanisms. Front Pharmacol. 12:722476. DOI:
10.3389/fphar.2021.722476. PMID:
34566647. PMCID:
PMC8458938.
Article
36. Tang Q, Xu F, Wei X, Gu J, Qiao P, Zhu X, et al. 2023; Investigation of β-caryophyllene as terpene penetration enhancer: role of stratum corneum retention. Eur J Pharm Sci. 183:106401. DOI:
10.1016/j.ejps.2023.106401. PMID:
36750147.
Article