Korean J Pain.  2025 Apr;38(2):163-176. 10.3344/kjp.24301.

The analgesic and anti-inflammatory effects of a combined preparation based on the blunt-nosed viper’s venom and oregano essential oil

Affiliations
  • 1L. A. Orbeli Institute of Physiology, National Academy of Sciences, Yerevan, Armenia
  • 2Yerevan State Medical University after M. Heratsi, Faculty of Pharmacy, Yerevan, Armenia

Abstract

Background
To relieve acute and inflammatory pain, preparations of plant and animal origin have been used. The present work aimed to study the analgesic and anti-inflammatory effectiveness of a combined preparation based on viper venom and essential oil. Determining effective routes of exposure, optimal doses, the duration of action of the preparation, and possible mechanisms of their action were the areas of interest.
Methods
Experiments were carried out on murine. Essential oil content was determined by gas chromatography– mass spectrometry equipment. The formalin, carrageenan, and hot plate tests were used. Certain methods for determining side effects were used as well. To determine the participation of cannabinoid and opioid receptors in the antinociceptive action of combined preparation, SR144528 and naloxone were used.
Results
The treatment of the ointment version of the preparation reduced inflammatory pain by more than 68% and decreased the volume of inflammatory edema by up to 36%. The involvement of cannabinoid receptors in the analgesic mechanism of the ointment was approximately 73%, and, for the opioid receptors, about 64%. Physiologically significant side effects were not observed.
Conclusions
The active components of the ointment are principally different in their mechanism of action and make it possible to relieve pain and inflammation both through the blockade of pain receptors of afferent nociceptive neurons (venom) as well as via cannabinoid and opioid receptors (essential oil).

Keyword

Acute Pain; Analgesics; Opioid; Cannabinoids; Drug Compounding; Inflammation; Oils; Volatile; Toxicology; Viper Venoms

Figure

  • Fig. 1 Effect of MLO + OVEO solution against formalin-induced pain according pretreatment period. The data represent mean ± SEM (n = 6 for each group). MLO: Macrovipera lebetina obtusa, OVEO: Origanum vulgare L. essential oil, SEM: standard error of mean.

  • Fig. 2 Comparison of the analgesic effect of MLO + OVEO with the effect of standard analgesics. The data represent mean ± SEM (n = 6 for each group). MLO: Macrovipera lebetina obtusa, OVEO: Origanum vulgare L. essential oil, SEM: standard error of mean.

  • Fig. 3 The dynamics of anti-inflammatory effect of liqiud preparation on carrageenan-induced edema. The “0” level means volume of intact paw taken as 100%. Carrageenan – carrageenan induced edema; Diclofenac – Diclofenac solution, IP; MLO + OVEO solution, IP. Data represent mean ± SEM (n = 6 for each group). MLO: Macrovipera lebetina obtusa, OVEO: Origanum vulgare L. essential oil, SEM: standard error of mean, ns: not significant, IP: intraperitoneal. ****P < 0.0001.

  • Fig. 4 Effect of the combined preparation and standard painkillers in hot plate test in mice. The data represent mean ± SEM (n = 6 for each group). MLO: Macrovipera lebetina obtusa, OVEO: Origanum vulgare L. essential oil, SEM: standard error of mean, ns: not significant.

  • Fig. 5 The toxicity LD50 of the combined solution (IP injection). The therapeutic dose was taken as arbitrary units = 1. The 1, 2-, 3-, 4-, and 5-times higher doses were tested in 5 experimental groups (n = 6 for each group). MLO: Macrovipera lebetina obtusa, OVEO: Origanum vulgare L. essential oil, IP: intraperitoneal.

  • Fig. 6 The analgesic effect of the ointment for the entire period of pain development during formalin biphasic action (A) and in the second phase (B). The data represent mean ± SEM (n = 6 for each group). MLO: Macrovipera lebetina obtusa, OVEO: Origanum vulgare L. essential oil, SEM: standard error of mean. **P < 0.01; ****P < 0.0001.

  • Fig. 7 Reduction of carrageenan-induced inflammatory edema by ointments. The “0” level means volume of intact paw taken as 100%. Carrageenan – carrageenan-induced edema; Diclofenac – diclofenac ointment; Ointment – ointment with OVEO + MLO; MLO ointment – ointment with MLO venom alone, OVEO ointment – ointment with OVEO alone. Data represent mean ± SEM (n = 6 for each group). MLO: Macrovipera lebetina obtusa, OVEO: Origanum vulgare L. essential oil, SEM: standard error of mean, ns: not significant. ***P < 0.001; ****P < 0.0001.

  • Fig. 8 Effect of the IPL injection of SR144528 on the antinociceptive activity of ointment in the FT during the entire period of pain development (A) and separately in different phases (B). The data represent mean ± SEM (n = 6 for each group). IPL: intraplantar, FT: formalin test, SEM: standard error of mean, ns: not significant. **P < 0.01; ***P < 0.001; ****P < 0.0001.

  • Fig. 9 Effect of the IPL injection of naloxone on the antinociceptive activity of ointment in the FT during the entire period of pain development (A) and separately in different phases (B). The data represent mean ± SEM (n = 6 for each group). IPL: intraplantar, FT: formalin test, SEM: standard error of mean. **P < 0.01; ****P < 0.0001.

  • Fig. 10 Skin irritation assessment. (A) Before treatment; (B) 7th day after daily treatment of ointment (n = 6 for each group).

  • Fig. 11 The intradermal dynamics of the main component of OVEO, β-caryophyllene, as a penetration enhancer. OVEO: Origanum vulgare L. essential oil, PE: penetration enhancer. Adapted from the article of Tang et al. (Eur J Pharm Sci 2023; 183: 106401) [36].


Reference

1. Cheng BC, Zhou XP, Zhu Q, Gong S, Qin ZH, Reid PF, et al. 2009; Cobratoxin inhibits pain-evoked discharge of neurons in thalamic parafascicular nucleus in rats: involvement of cholinergic and serotonergic systems. Toxicon. 54:224–32. DOI: 10.1016/j.toxicon.2009.04.007. PMID: 19375445.
Article
2. Diochot S, Baron A, Salinas M, Douguet D, Scarzello S, Dabert-Gay AS, et al. 2012; Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature. 490:552–5. DOI: 10.1038/nature11494. PMID: 23034652.
Article
3. Zhang Y, Jiang B, Li W, Zhou C, Ji F, Xie Q, et al. 2010; Mechanisms of analgesic action of Gln49-PLA(2) from Gloydius ussurensis snake venom. Appl Biochem Biotechnol. 160:773–9. DOI: 10.1007/s12010-009-8573-4. PMID: 19277489.
Article
4. Darbinyan AA, Parseghyan LM, Moghrovyan AV, Babajanyan MA, Voskanyan AV. 2023; The transition of pain into anesthesia - the effect of various doses of Macrovipera lebetina obtusa venom. Neurochem J. 17:662–7. DOI: 10.1134/S1819712423040098.
5. Moghrovyan A, Sahakyan N, Babayan A, Chichoyan N, Petrosyan M, Trchounian A. 2019; Essential oil and ethanol extract of oregano (Origanum vulgare L.) from Armenian flora as a natural source of terpenes, flavonoids and other phytochemicals with antiradical, antioxidant, metal chelating, tyrosinase inhibitory and antibacterial activity. Curr Pharm Des. 25:1809–16. DOI: 10.2174/1381612825666190702095612. PMID: 31267860.
Article
6. Fidyt K, Fiedorowicz A, Strządała L, Szumny A. 2016; β-caryophyllene and β-caryophyllene oxide-natural compounds of anticancer and analgesic properties. Cancer Med. 5:3007–17. DOI: 10.1002/cam4.816. PMID: 27696789. PMCID: PMC5083753.
7. Moghrovyan A, Parseghyan L, Sevoyan G, Darbinyan A, Sahakyan N, Gaboyan M, et al. 2022; Antinociceptive, anti-inflammatory, and cytotoxic properties of Origanum vulgare essential oil, rich with β-caryophyllene and β-caryophyllene oxide. Korean J Pain. 35:140–51. DOI: 10.3344/kjp.2022.35.2.140. PMID: 35354677. PMCID: PMC8977206.
Article
8. Prawang A, Chanjamlong N, Rungwara W, Santimaleeworagun W, Paiboonvong T, Manapattanasatein T, et al. 2022; Combination therapy versus monotherapy in the treatment of Stenotrophomonas maltophilia infections: a systematic review and meta-analysis. Antibiotics (Basel). 11:1788. DOI: 10.3390/antibiotics11121788. PMID: 36551445. PMCID: PMC9774194.
Article
9. Sanz L, Ayvazyan N, Calvete JJ. 2008; Snake venomics of the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei. J Proteomics. 71:198–209. DOI: 10.1016/j.jprot.2008.05.003. PMID: 18590992.
Article
10. Kishmiryan A, Ghukasyan G, Ghulikyan L, Darbinyan A, Parseghyan L, Voskanyan A, et al. 2021; The development and evaluation of the efficacy of ovine-derived experimental antivenom immunoserum against Macrovipera lebetina obtusa (MLO) venom. J Venom Res. 11:7–15.
11. World Health Organization. 2011. Quality control methods for herbal materials. World Health Organization;p. 173.
12. Darbinyan AA, Antonyan MV, Koshatashyan HR, Gevorgyan SS, Arestakesyan HV, Karabekian ZI, et al. 2018; Changes in microglia activity of rat brain induced by Macrovipera lebetina obtusa venom. Neurosciences. 5:41. DOI: 10.20517/2347-8659.2018.33.
Article
13. Voskanyan AV, Darbinyan AA, Parseghyan LM. 2021; Hemorrhagic changes and microglia activation induced by Macrovipera lebetina obtusa venom with the inhibited enzymatic activity in rat brain. Toxicol Res. 38:195–204. DOI: 10.1007/s43188-021-00102-4. PMID: 35419270. PMCID: PMC8960507.
Article
14. Tjølsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. 1992; The formalin test: an evaluation of the method. Pain. 51:5–17. DOI: 10.1016/0304-3959(92)90003-T. PMID: 1454405.
Article
15. Hoffmann T, Klemm F, I Kichko T, Sauer SK, Kistner K, Riedl B, et al. 2022; The formalin test does not probe inflammatory pain but excitotoxicity in rodent skin. Physiol Rep. 10:e15194. DOI: 10.14814/phy2.15194.
Article
16. Santos LH, Feres CA, Melo FH, Coelho MM, Nothenberg MS, Oga S, et al. 2004; Anti-inflammatory, antinociceptive and ulcerogenic activity of a zinc-diclofenac complex in rats. Braz J Med Biol Res. 37:1205–13. DOI: 10.1590/S0100-879X2004000800011. PMID: 15273822.
Article
17. Mutalik S, Udupa N. 2004; Glibenclamide transdermal patches: physicochemical, pharmacodynamic, and pharmacokinetic evaluations. J Pharm Sci. 93:1577–94. DOI: 10.1002/jps.20058. PMID: 15124215.
Article
18. Otterness IG, Moore PF. 1988; Carrageenan foot edema test. Methods Enzymol. 162:320–7. DOI: 10.1016/0076-6879(88)62086-6. PMID: 3226312.
19. Carter RB. 1991; Differentiating analgesic and non-analgesic drug activities on rat hot plate: effect of behavioral endpoint. Pain. 47:211–20. DOI: 10.1016/0304-3959(91)90207-E. PMID: 1762817.
Article
20. Espejo EF, Mir D. 1993; Structure of the rat's behaviour in the hot plate test. Behav Brain Res. 56:171–6. DOI: 10.1016/0166-4328(93)90035-O. PMID: 8240711.
Article
21. Plone MA, Emerich DF, Lindner MD. 1996; Individual differences in the hotplate test and effects of habituation on sensitivity to morphine. Pain. 66:265–70. DOI: 10.1016/0304-3959(96)03048-5. PMID: 8880849.
Article
22. Katsuyama S, Kuwahata H, Yagi T, Kishikawa Y, Komatsu T, Sakurada T, et al. 2012; Intraplantar injection of linalool reduces paclitaxel-induced acute pain in mice. Biomed Res. 33:175–81. DOI: 10.2220/biomedres.33.175. PMID: 22790217.
Article
23. Abalo R, Cabezos PA, Vera G, Fernández-Pujol R, Martín MI. 2010; The cannabinoid antagonist SR144528 enhances the acute effect of WIN 55,212-2 on gastrointestinal motility in the rat. Neurogastroenterol Motil. 22:694–e206. DOI: 10.1111/j.1365-2982.2009.01466.x. PMID: 20132133.
Article
24. Randhawa MA. 2009; Calculation of LD50 values from the method of Miller and Tainter, 1944. J Ayub Med Coll Abbottabad. 21:184–5.
25. Tsatsakis AM, Vassilopoulou L, Kovatsi L, Tsitsimpikou C, Karamanou M, Leon G, et al. 2018; The dose response principle from philosophy to modern toxicology: the impact of ancient philosophy and medicine in modern toxicology science. Toxicol Rep. 5:1107–13. DOI: 10.1016/j.toxrep.2018.10.001. PMID: 30450285. PMCID: PMC6226566.
Article
26. Zambelli VO, Picolo G, Fernandes CAH, Fontes MRM, Cury Y. 2017; Secreted phospholipases A₂ from animal venoms in pain and analgesia. Toxins (Basel). 9:406. DOI: 10.3390/toxins9120406. PMID: 29311537. PMCID: PMC5744126.
27. Li D, Lee Y, Kim W, Lee K, Bae H, Kim SK. 2015; Analgesic effects of bee venom derived phospholipase A(2) in a mouse model of oxaliplatin-induced neuropathic pain. Toxins (Basel). 7:2422–34. DOI: 10.3390/toxins7072422. PMID: 26131771. PMCID: PMC4516921.
28. Scher JU, Pillinger MH. 2009; The anti-inflammatory effects of prostaglandins. J Investig Med. 57:703–8. DOI: 10.2310/JIM.0b013e31819aaa76. PMID: 19240648.
Article
29. Murata T, Maehara T. 2016; Discovery of anti-inflammatory role of prostaglandin D2. J Vet Med Sci. 78:1643–7. DOI: 10.1292/jvms.16-0347. PMID: 27498997. PMCID: PMC5138415.
30. Werker E, Putievsky E, Ravid U. 1985; The essential oils and glandular hairs in different chemotypes of Origanum vulgare L. Ann Bot. 55:793–801. DOI: 10.1093/oxfordjournals.aob.a086958.
Article
31. Takemoto Y, Kishi C, Sugiura Y, Yoshioka Y, Matsumura S, Moriyama T, et al. 2021; Distribution of inhaled volatile β-caryophyllene and dynamic changes of liver metabolites in mice. Sci Rep. 11:1728. DOI: 10.1038/s41598-021-81181-z. PMID: 33462287. PMCID: PMC7813867.
Article
32. Mallmann MP, Mello FK, Neuberger B, da Costa Sobral KG, Fighera MR, Royes LFF, et al. 2022; Beta-caryophyllene attenuates short-term recurrent seizure activity and blood-brain-barrier breakdown after pilocarpine-induced status epilepticus in rats. Brain Res. 1784:147883. DOI: 10.1016/j.brainres.2022.147883. PMID: 35300975.
Article
33. Chavan MJ, Wakte PS, Shinde DB. 2010; Analgesic and anti-inflammatory activity of Caryophyllene oxide from Annona squamosa L. bark. Phytomedicine. 17:149–51. DOI: 10.1016/j.phymed.2009.05.016. PMID: 19576741.
Article
34. Sain S, Naoghare PK, Devi SS, Daiwile A, Krishnamurthi K, Arrigo P, et al. 2014; Beta caryophyllene and caryophyllene oxide, isolated from Aegle marmelos, as the potent anti-inflammatory agents against lymphoma and neuroblastoma cells. Antiinflamm Antiallergy Agents Med Chem. 13:45–55. DOI: 10.2174/18715230113129990016. PMID: 24484210.
Article
35. He XH, Galaj E, Bi GH, He Y, Hempel B, Wang YL, et al. 2021; β-caryophyllene, an FDA-approved food additive, inhibits methamphetamine-taking and methamphetamine-seeking behaviors possibly via CB2 and non-CB2 receptor mechanisms. Front Pharmacol. 12:722476. DOI: 10.3389/fphar.2021.722476. PMID: 34566647. PMCID: PMC8458938.
Article
36. Tang Q, Xu F, Wei X, Gu J, Qiao P, Zhu X, et al. 2023; Investigation of β-caryophyllene as terpene penetration enhancer: role of stratum corneum retention. Eur J Pharm Sci. 183:106401. DOI: 10.1016/j.ejps.2023.106401. PMID: 36750147.
Article
Full Text Links
  • KJP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr