Korean J Pain.  2022 Apr;35(2):140-151. 10.3344/kjp.2022.35.2.140.

Antinociceptive, anti-inflammatory, and cytotoxic properties of Origanum vulgare essential oil, rich with β-caryophyllene and β-caryophyllene oxide

Affiliations
  • 1Department of Pharmacognosy, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
  • 2Orbeli Institute of Physiology, Laboratory of Physiologically Active Substances Investigations, Yerevan, Armenia
  • 3Orbeli Institute of Physiology, Laboratory of Tissue Engineering, Yerevan, Armenia
  • 4Yerevan State University, Research Institute of Biology, Faculty of Biology, Yerevan, Armenia
  • 5Yerevan State Medical University after M. Heratsi, Faculty of Pharmacy, Yerevan, Armenia

Abstract

Background
Essential oils are of great interest for their analgesic and anti-inflammatory properties. We aimed to study the content of the essential oil of the Origanum vulgare of the Armenian highlands (OVA) in different periods of vegetation and to investigate its antinociceptive and anti-inflammatory effects in mice (in vivo) and cytotoxic action in cultured cells (in vitro). OVA essential oil was extracted from fresh plant material by hydro-distillation.
Methods
For OVA essential oil contents determination the gas chromatographymass spectrometry method was used. Formalin and hot plate tests and analysis of cell viability using the methyl-thiazolyl-tetrazolium (MTT) assay were used.
Results
The maximal content of β-caryophyllene and β-caryophyllene oxide in OVA essential oil was revealed in the period of blossoming (8.18% and 13.36%, correspondently). In the formalin test, 4% OVA essential oil solution (3.5 mg/mouse) exerts significant antinociceptive and anti-inflammatory effects (P = 0.003). MTT assay shows approximately 60% cytotoxicity in HeLa and Vero cells for 2.0 μL/mL OVA essential oil in media.
Conclusions
The wild oregano herb of Armenian highlands, harvested in the blossoming period, may be considered as a valuable source for developing pain-relieving preparations.

Keyword

Analgesia; Anti-Inflammatory Agents; Beta-Caryophyllene; Caryophyllene Oxide; Cell Survival; Gas Chromatography-Mass Spectrometry; Nociception; Oils; Volatile; Origanum; Pain; Pain Measurement

Figure

  • Fig. 1 GC-MS chromotograph of OVA essential oil in the period of pre-blossoming. 1: (+)-Sabinene, 2: β-Pinene, 3: α-Terpinolene, 4: Eucalyptol, 5: trans-β-Ocimene, 6: 1-Isopropyl-4-methyl-1,4-cyclohexadiene, 7: β-Ocimene, 8: Ethyl amyl ketone, 9: ο-Cymene, 10: trans-β-Terpineol, 11: Neo-allo-ocimene, 12: 3-Octanol, 13: p-Menthan-3-one, 14: Elixene, 15: (-)-β-Bourbonene, 16: β-Linalool, 17: β-Caryophyllene, 18: L-4-terpineol, 19: α-Humulen, 20: D-Germacrene, 21: α-Muurolene, 22: γ-Elemene, 23: 1-Isopropyl-4,7-dimethyl-1,2,3,5,6,8a-hexahydronaphtalene, 24: (R)-(+)-β-Citronellol, 25: β-Caryophyllene epoxide, 26: d-Viridiflorol, 27: Ent-Spathulenol, 28: 1-Methyl-4-(methylethyl)-(E)-2-cyclohexenol, 29: tau-Cadinol, 30: α-Cadinol, 31: 6-Isopropyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydro-2-naphthalenol, 32: Methyl 1,5,5-trimethyl-6-[(1E)-3-methyl-1,3-butadienyl]-7-oxabicyclo[4.1.0.]hept-2-yl ether, 33: trans-Phytol, 34: Diepicadrene-1-oxide, 35: (3E)-4-(1,5-Dihydroxy-2,6,6-trimethyl-2-cyclohexen-1-yl)-3-buten-2-one, 36: cis-Z-α-Bisabolene epoxide, 37: 3-[(2E)-2-Dodecenyl]dihydro-2,5-furandione, 38: Isoaromadendrene epoxide, 39: 2-Methyl-4-(2,6,6-trimethylcyclohex-1-enyl)but-2-en-1-ol. GC-MS: gas chromatography–mass spectrometry, OVA: Origanum vulgare of the Armenian highlands.

  • Fig. 2 GC-MS chromotograph of OVA essential oil in the period of blossoming. 1: β-Thujene, 2: (+)-Sabinene, 3: β-Pinene, 4: α-Terpinolene, 5: D-Limonene, 6: Eucalyptol, 7: γ-Terpinene, 8: Ethyl amyl ketone, 9: ο-Cymene, 10: 4-methyl-3-(1-methylethylidene)-1-cyclohexene, 11: 2-Hexenal diethyl acetal, trans, 12: 3-Octanol, 13: cis-β-Terpineol, 14: alfa-Copaene, 15: Dihydroedulan II, 16: (-)-β-Bourbonene, 17: β-Linalool, 18: β-Caryophyllene, 19: L-4-terpineol, 20: Alloaromadendrene, 21: Humulen, 22: Germacrene D, 23: I-β-Bisabolene, 24: Elixene, 25: α-trans-Farnesene, 26: β-Caryophyllene epoxide, 27: α-Humulene epoxide II, 28: Ent-Spathulenol, 29: Isoaromadendrene epoxide, 30: Carvacrol/Isothymol, 31: α-Cadinol, 32: Ledene oxide-(II), 33: Tetracyclo[6.3.2.0(2,5).0(1,8)]tridecan-9-ol,4,4-dimethyl-, 34: Dibutyl phthalate, 35: Palmitic acid. GC-MS: gas chromatography–mass spectrometry, OVA: Origanum vulgare of the Armenian highlands.

  • Fig. 3 GC-MS chromotograph of OVA essential oil in the period of fruiting. 1: Sabinene, 2: Eucalyptol, 3: trans-β-Ocimene, 4: γ-Terpinene, 5: β-Ocimene, 6: o-Cymene, 7: α-Terpinolene, 8: Ethylamylcarbinol, 9: Matsutake, 10: (-)-β-Bourbonene, 11: β-Linalool, 12: β-Caryophyllene, 13: L-4-terpineol, 14: α-Humulene, 15: α-Terpineol, 16: Germacrene D, 17: I-β-Bisabolene, 18: Elixene, 19: trans-α-Farnesene, 20: (+)-δ-Cadinene, 21: β-Caryophyllene epoxide, 22: Ent-Spathulenol, 23: tau-Cadinol, 24: 6-Isopropenyl-4,8a-dimethyl-3,5,6,7,8,8a-hexahydro-2-(1H)-naphthalenone, 25: α-Cadinol, 26: Tricyclo[5.2.2.0(1,6)]undecan-3-ol, 2-methylene-6,8,8-trimethyl, 27: Tetracyclo[6.3.2.0(2,5).0(1,8)]tridecan-9-ol,4,4-dimethyl, 28: trans-Z-α-Bisabolene epoxide, 29: 15,15`-Bi-1,4,7,10,13-pentaoxacyclohexadecane, 30: 3,6,9,12,15,18,21-Heptaoxatritriacontan-1-ol, 31: 3-Ethyl-5-(2-ethylbutyl)octadecane, 32: Isodecyl octyl phthalate. GC-MS: gas chromatography–mass spectrometry, OVA: Origanum vulgare of the Armenian highlands.

  • Fig. 4 The percentage of OVA essential oil dominant components in different vegetation periods. OVA: Origanum vulgare of the Armenian highlands.

  • Fig. 5 The analgesic effects of Analgin and Diclofenac pretreatment (15 minutes) vs. formalin. The data represent mean ± standard error of mean.

  • Fig. 6 The analgesic properties of various doses of OVA essential oil (OVEO), 15 minutes before formalin injection. The data represent mean ± standard error of mean. OVA: Origanum vulgare of the Armenian highlands.

  • Fig. 7 The analgesic effect of 4% OVA essential oil 15 and 30 minutes before formalin injection. The data represent mean ± standard error of mean. OVA: Origanum vulgare of the Armenian highlands.

  • Fig. 8 Comparing the analgesic effect of 4% OVA essential oil (OVEO) with standard analgesics. The data represent mean ± standard error of mean. OVA: Origanum vulgare of the Armenian highlands.

  • Fig. 9 Significance of obtained data in the second phase of the formalin test. The data represent mean ± standard error of mean (P < 0.05). OVA: Origanum vulgare of the Armenian highlands, OVEO: OVA essential oil, ns: not significant. **P < 0.005, ***P < 0.0005, ****P < 0.0001.

  • Fig. 10 Effect of the OVA essential oil in hot plate test in mice. Control (saline, 0.1 mL, intra peritoneal [IP]) and experimental (0.1 mL, 4% OVEO, IP) groups were injected 15 minutes before the behavioral test. The data represent mean ± standard error of mean. OVA: Origanum vulgare of the Armenian highlands, OVEO: OVA essential oil, ns: not significant.

  • Fig. 11 The growth-inhibitory effect of OVA essential oil on HeLa and Vero cells viability (media with OVA essential oil preliminary addition). OVA: Origanum vulgare of the Armenian highlands. The data represent mean ± standard error of mean.

  • Fig. 12 The cytotoxic effect of OVA essential oil on HeLa and Vero cells viability (media without OVA essential oil addition). OVA: Origanum vulgare of the Armenian highlands. The data represent mean ± standard error of mean.

  • Fig. 13 Significance of cytotoxic effect of OVA essential oil. (A) The essential oil added after cell attachment. (B) The essential oil added before cell attachment (P < 0.05). The data represent mean ± standard error of mean. OVA: Origanum vulgare of the Armenian highlands, ns: not significant. ***P < 0.0005.


Reference

1. Alwafa RA, Mudalal S, Mauriello G. 2021; Origanum syriacum L. (Za'atar), from raw to go: a review. Plants (Basel). 10:1001. DOI: 10.3390/plants10051001. PMID: 34067806. PMCID: PMC8156404. PMID: b581ff08daad4f8f95ca57a084455b36.
2. Sahakyan N, Petrosyan M, Koss-Mikołajczyk I, Bartoszek A, Sad TG, Nasim MJ, et al. 2019; The Caucasian flora: a still-to-be-discovered rich source of antioxidants. Free Radic Res. 53(sup1):1153–62. DOI: 10.1080/10715762.2019.1648799. PMID: 31510813.
Article
3. Kimera F, Sewilam H, Fouad WM, Suloma A. 2021; Efficient utilization of aquaculture effluents to maximize plant growth, yield, and essential oils composition of Origanum majorana cultivation. Ann Agric Sci. 66:1–7. https://doi.org/10.1016/j.aoas.2020.11.002. DOI: 10.1016/j.aoas.2020.11.002.
Article
4. Abrahamyan A, Barsevskis A, Crockett S, Melikyan A. 2014; Distribution of Origanum vulgare L. and population dynamics during the last decade in Armenia. J Life Sci (Libertyville). 8:690–8. https://www.airitilibrary.com/Publication/alDetailedMesh?docid=19347391-201408-201812030017-201812030017-690-698.
5. Moghrovyan A, Sahakyan N, Babayan A, Chichoyan N, Petrosyan M, Trchounian A. 2019; Essential oil and ethanol extract of oregano (Origanum vulgare L.) from Armenian flora as a natural source of terpenes, flavonoids and other phytochemicals with antiradical, antioxidant, metal chelating, tyrosinase inhibitory and antibacterial activity. Curr Pharm Des. 25:1809–16. DOI: 10.2174/1381612825666190702095612. PMID: 31267860.
Article
6. Castronovo LM, Calonico C, Ascrizzi R, Del Duca S, Delfino V, Chioccioli S, et al. 2020; The cultivable bacterial microbiota associated to the medicinal plant Origanum vulgare L.: from antibiotic resistance to growth-inhibitory properties. Front Microbiol. 11:862. DOI: 10.3389/fmicb.2020.00862. PMID: 32457726. PMCID: PMC7226918. PMID: e1c74d3f314540a88f1bef95d9f8a6f8.
7. Council of Europe. 2005. European pharmacopoeia. 5th ed. Council of Europe;Strasbourg: https://www.worldcat.org/title/european-pharmacopoeia/oclc/608099208. DOI: 10.2174/1381612825666190702095612.
8. Werker E, Putievsky E, Ravid U. 1985; The essential oils and glandular hairs in different chemotypes of Origanum vulgare L. Ann Bot. 55:793–801. https://doi.org/10.1093/oxfordjournals.aob.a086958. DOI: 10.1093/oxfordjournals.aob.a086958.
Article
9. Leyva-López N, Gutiérrez-Grijalva EP, Vazquez-Olivo G, Heredia JB. 2017; Essential oils of oregano: biological activity beyond their antimicrobial properties. Molecules. 22:989. DOI: 10.3390/molecules22060989. PMID: 28613267. PMCID: PMC6152729.
Article
10. Moghrovyan A. 2014. Qualitative analysis of Oregano ordinary herb (Herba Origani vulgaris) essential oil in various periods of vegetation. Paper presented at: Annual reporting science conference. 2014 Sep 15; Yerevan, Armenia. YSMU;Yerevan: p. 67–71.
11. Dadalioglu I, Evrendilek GA. 2004; Chemical compositions and antibacterial effects of essential oils of Turkish oregano (Origanum minutiflorum), bay laurel (Laurus nobilis), Spanish lavender (Lavandula stoechas L.), and fennel (Foeniculum vulgare) on common foodborne pathogens. J Agric Food Chem. 52:8255–60. DOI: 10.1021/jf049033e. PMID: 15612826.
12. Sarmento-Neto JF, do Nascimento LG, Felipe CF, de Sousa DP. 2015; Analgesic potential of essential oils. Molecules. 21:E20. DOI: 10.3390/molecules21010020. PMID: 26703556. PMCID: PMC6273222.
Article
13. Johnson SA, Rodriguez D, Allred K. 2020; A systematic review of essential oils and the endocannabinoid system: a connection worthy of further exploration. Evid Based Complement Alternat Med. 2020:8035301. DOI: 10.1155/2020/8035301. PMID: 32508955. PMCID: PMC7246407.
Article
14. Rubino T, Zamberletti E, Parolaro D. 2015; Endocannabinoids and mental disorders. Handb Exp Pharmacol. 231:261–83. DOI: 10.1007/978-3-319-20825-1_9. PMID: 26408164.
Article
15. Fidyt K, Fiedorowicz A, Strządała L, Szumny A. 2016; β-caryophyllene and β-caryophyllene oxide-natural compounds of anticancer and analgesic properties. Cancer Med. 5:3007–17. DOI: 10.1002/cam4.816. PMID: 27696789. PMCID: PMC5083753.
Article
16. Turcotte C, Blanchet MR, Laviolette M, Flamand N. 2016; The CB2 receptor and its role as a regulator of inflammation. Cell Mol Life Sci. 73:4449–70. DOI: 10.1007/s00018-016-2300-4. PMID: 27402121. PMCID: PMC5075023.
Article
17. McKenna M, McDougall JJ. 2020; Cannabinoid control of neurogenic inflammation. Br J Pharmacol. 177:4386–99. DOI: 10.1111/bph.15208. PMID: 33289534. PMCID: PMC7484507.
Article
18. DiSabato DJ, Quan N, Godbout JP. 2016; Neuroinflammation: the devil is in the details. J Neurochem. 139(Suppl 2):136–53. DOI: 10.1111/jnc.13607. PMID: 26990767. PMCID: PMC5025335.
Article
19. World Health Organization. 2011. Quality control methods for herbal materials. Updated ed. World Health Organization;Geneva: p. 173. https://apps.who.int/iris/handle/10665/44479. DOI: 10.1007/978-3-319-20825-1_9.
20. National Institute of Standards and Technology. NIST Standard Reference Database 1A [computer program]. Version 2.4 Gaithersburg (MD).
21. Kováts E. 1958; [Characterization of organic compounds by gas chromatography. Part 1. Retention indices of aliphatic halides, alcohols, aldehydes and ketones]. Helv Chim Acta. 41:1915–32. German.
22. Dubuisson D, Dennis SG. 1977; The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain. 4:161–74. DOI: 10.1016/0304-3959(77)90130-0. PMID: 564014.
Article
23. Santos LH, Feres CA, Melo FH, Coelho MM, Nothenberg MS, Oga S, et al. 2004; Anti-inflammatory, antinociceptive and ulcerogenic activity of a zinc-diclofenac complex in rats. Braz J Med Biol Res. 37:1205–13. DOI: 10.1590/S0100-879X2004000800011. PMID: 15273822.
Article
24. Espejo EF, Mir D. 1993; Structure of the rat's behaviour in the hot plate test. Behav Brain Res. 56:171–6. DOI: 10.1016/0166-4328(93)90035-O. PMID: 8240711.
Article
25. Kumar P, Nagarajan A, Uchil PD. 2018; Analysis of cell viability by the MTT assay. Cold Spring Harb Protoc. doi: 10.1101/pdb.prot095505. DOI: 10.1101/pdb.prot095505. PMID: 29858338.
Article
26. Tjølsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. 1992; The formalin test: an evaluation of the method. Pain. 51:5–17. DOI: 10.1016/0304-3959(92)90003-T.
Article
27. Granados-Chinchilla F, Villegas E, Molina A, Arias C. 2016; Composition, chemical fingerprinting and antimicrobial assessment of Costa Rican Cultivated guavas (Psidium friedrichsthalianum (O. Berg) Nied. and Psidium guajava L.) essential oils from leaves and fruits. Nat Prod Chem Res. 4:236. https://www.kerwa.ucr.ac.cr/handle/10669/76578. DOI: 10.4172/2329-6836.1000236.
28. Oliveira GLDS, Machado KC, Machado KC, da Silva APDSCL, Feitosa CM, de Castro Almeida FR. 2018; Non-clinical toxicity of β-caryophyllene, a dietary cannabinoid: absence of adverse effects in female Swiss mice. Regul Toxicol Pharmacol. 92:338–46. DOI: 10.1016/j.yrtph.2017.12.013. PMID: 29258925.
29. Henry JL, Yashpal K, Pitcher GM, Coderre TJ. 1999; Physiological evidence that the 'interphase' in the formalin test is due to active inhibition. Pain. 82:57–63. DOI: 10.1016/S0304-3959(99)00033-0. PMID: 10422660.
Article
30. Dahham SS, Tabana YM, Iqbal MA, Ahamed MB, Ezzat MO, Majid AS, et al. 2015; The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules. 20:11808–29. DOI: 10.3390/molecules200711808. PMID: 26132906. PMCID: PMC6331975.
Article
Full Text Links
  • KJP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr