J Dent Rehabil Appl Sci.  2024 Nov;40(4):241-248. 10.14368/jdras.2024.40.4.241.

Antimicrobial effect of photodynamic therapy on Staphylococcus aureus biofilms on zirconia disks

Affiliations
  • 1Department of Periodontology, Research Institute for Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
  • 2Department of Oral Microbiology, Research Institute for Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea

Abstract

Purpose
Staphylococcus aureus can attach to extracellular matrix components and plasma proteins deposited on biomaterial surfaces, ultimately forming biofilms. Therefore, managing S. aureus is recommended for preventing and treating peri-implant diseases. This study aimed to evaluate the biofilm-forming ability of S. aureus on zirconia surfaces and to assess the efficacy of photodynamic therapy (PDT) in reducing these biofilms.
Materials and Methods
Biofilm growth analysis showed optimal formation at 48 hours. Therefore, S. aureus ATCC 25923 was inoculated onto a sterilized zirconia disk and cultivated for 48 hours to form the biofilm. Thereafter, the biofilms were treated with phosphate-buffered saline (PBS; control), chlorhexidine (CHX), tetracycline (TC), toluidine blue O (TBO), cold diode laser (laser), or PDT (TBO + laser), with each group consisting of seven disks. The bacterial load was quantified using colony-forming unit (CFU) counts, and biofilm viability was evaluated using confocal laser scanning microscopy (CLSM).
Results
Significant reductions in bacterial counts were observed in the CHX (95.3%), TC (95.0%), and PDT (93.8%) groups compared to the control (P < 0.001). CLSM revealed a greater number of dead bacteria in the CHX, TC and PDT groups compared to that in other groups.
Conclusion
Within its limitations, this study demonstrated that S. aureus can form biofilms on zirconia surfaces. PDT showed similar efficacy to conventional antimicrobial treatments such as CHX and TC for reducing S. aureus biofilms.zirconia

Keyword

bioFilm; photodynamic therapy; Staphylococcus aureus; zirconia

Figure

  • Fig. 1 Growth curve of the S. aureus biofilm on a zirconia disk. * The number of bacteria peaks at 48 h. CFU, colony-forming unit.

  • Fig. 2 Confocal laser scanning microscopy images of S. aureus attached to the zirconia disks (original magnification: 10×). Live bacteria appear green, dead bacteria appear red, and the overlap areas appear yellow. CLSM revealed a greater number of dead bacteria in the CHX, TC and PDT groups compared to that in other groups. (A) Control group, (B) CHX group, (C) TC group, (D) TBO group, (E) Laser group, (F) PDT group. CHX, chlorhexidine; TC, tetracycline; TBO, toluidine blue O; Laser, cold diode laser; PDT, photodynamic therapy.


Reference

References

1. Zitzmann NU, Berglundh T. 2008; Definition and prevalence of peri-implant diseases. J Clin Periodontol. 35(8 Suppl):286–91. DOI: 10.1111/j.1600-051X.2008.01274.x. PMID: 18724856.
2. Albrektsson T, Isidor F. In : Lang NP, Karring T, editors. Consensus report of session IV. Proceedings of the first European workshop on periodontology; London: Quintessence Publishing;1994. p. 365–9.
3. Lindhe J, Meyle J. Group D of European Workshop on Periodontology. Peri-implant diseases: Consensus Report of the Sixth European Workshop on Periodontology. J Clin Periodontol. 2008; 35(8 Suppl):282–5. DOI: 10.1111/j.1600-051X.2008.01283.x. PMID: 18724855.
4. Caton JG, Armitage G, Berglundh T, Chapple ILC, Jepsen S, Kornman KS, Mealey BL, Papapanou PN, Sanz M, Tonetti MS. 2018; A new classification scheme for periodontal and peri-implant diseases and conditions - Introduction and key changes from the 1999 classification. J Clin Periodontol. 45 Suppl 20:S1–8. DOI: 10.1111/jcpe.12935.
5. Schwarz F, Derks J, Monje A, Wang HL. 2018; Peri-implantitis. J Periodontol. 89 Suppl 1:S267–90. DOI: 10.1002/JPER.16-0350. PMID: 29926957.
6. Lang NP, Berglundh T. Working Group 4 of Seventh European Workshop on Periodontology. 2011; Periimplant diseases: where are we now? - Consensus of the Seventh European Workshop on Periodontology. J Clin Periodontol. 38 Suppl 11:178–81. DOI: 10.1111/j.1600-051X.2010.01674.x. PMID: 21323713.
7. Pye AD, Lockhart DE, Dawson MP, Murray CA, Smith AJ. 2009; A review of dental implants and infection. J Hosp Infect. 72:104–10. DOI: 10.1016/j.jhin.2009.02.010. PMID: 19329223.
8. Sahrmann P, Gilli F, Wiedemeier DB, Attin T, Schmidlin PR, Karygianni L. 2020; The Microbiome of Peri-Implantitis: A Systematic Review and Meta-Analysis. Microorganisms. 8:661. DOI: 10.3390/microorganisms8050661. PMID: 32369987. PMCID: PMC7284896.
9. Salvi GE, Fürst MM, Lang NP, Persson GR. 2008; One-year bacterial colonization patterns of Staphylococcus aureus and other bacteria at implants and adjacent teeth. Clin Oral Implants Res. 19:242–8. DOI: 10.1111/j.1600-0501.2007.01470.x. PMID: 18177429.
10. Persson GR, Renvert S. 2014; Cluster of bacteria associated with peri-implantitis. Clin Implant Dent Relat Res. 16:783–93. DOI: 10.1111/cid.12052. PMID: 23527870.
11. McCormack MG, Smith AJ, Akram AN, Jackson M, Robertson D, Edwards G. 2015; Staphylococcus aureus and the oral cavity: an overlooked source of carriage and infection? Am J Infect Control. 43:35–7. DOI: 10.1016/j.ajic.2014.09.015. PMID: 25564121.
12. Harris LG, Richards RG. 2006; Staphylococci and implant surfaces: a review. Injury. 37 Suppl 2:S3–14. DOI: 10.1016/j.injury.2006.04.003. PMID: 16651069.
13. Cramton SE, Gerke C, Schnell NF, Nichols WW, Götz F. 1999; The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun. 67:5427–33. DOI: 10.1128/IAI.67.10.5427-5433.1999. PMID: 10496925. PMCID: PMC96900.
14. Prathapachandran J, Suresh N. 2012; Management of peri-implantitis. Dent Res J (Isfahan). 9:516–21. DOI: 10.4103/1735-3327.104867. PMID: 23559913. PMCID: PMC3612185.
15. Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O, Kotowski K, Kulbacka J. 2018; Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother. 106:1098–107. DOI: 10.1016/j.biopha.2018.07.049. PMID: 30119176.
16. Misba L, Zaidi S, Khan AU. 2017; A comparison of antibacterial and antibiofilm efficacy of phenothiazinium dyes between Gram positive and Gram negative bacterial biofilm. Photodiagnosis Photodyn Ther. 18:24–33. DOI: 10.1016/j.pdpdt.2017.01.177. PMID: 28119141.
17. Usacheva MN, Teichert MC, Biel MA. 2003; The interaction of lipopolysaccharides with phenothiazine dyes. Lasers Surg Med. 33:311–9. DOI: 10.1002/lsm.10226. PMID: 14677158.
18. Özkurt Z, Kazazoğlu E. 2011; Zirconia dental implants: a literature review. J Oral Implantol. 37:367–76. DOI: 10.1563/AAID-JOI-D-09-00079. PMID: 20545529.
19. Mahmoudi H, Bahador A, Pourhajibagher M, Alikhani MY. 2018; Antimicrobial Photodynamic Therapy: An Effective Alternative Approach to Control Bacterial Infections. J Lasers Med Sci. 9:154–60. DOI: 10.15171/jlms.2018.29. PMID: 30809325. PMCID: PMC6378356.
20. Chambrone L, Wang HL, Romanos GE. 2018; Antimicrobial photodynamic therapy for the treatment of periodontitis and peri-implantitis: An American Academy of Periodontology best evidence review. J Periodontol. 89:783–803.
21. Pfitzner A, Sigusch BW, Albrecht V, Glockmann E. 2004; Killing of periodontopathogenic bacteria by photodynamic therapy. J Periodontol. 75:1343–9. DOI: 10.1902/jop.2004.75.10.1343. PMID: 15562911.
22. Wilensky A, Shapira L, Limones A, Martin C. 2023; The efficacy of implant surface decontamination using chemicals during surgical treatment of peri-implantitis: A systematic review and meta-analysis. J Clin Periodontol. 50 Suppl 26:336–58. DOI: 10.1111/jcpe.13794. PMID: 36792071.
23. Mombelli A, Feloutzis A, Brägger U, Lang NP. 2001; Treatment of peri-implantitis by local delivery of tetracycline. Clinical, microbiological and radiological results. Clin Oral Implants Res. 12:287–94. DOI: 10.1034/j.1600-0501.2001.012004287.x. PMID: 11488856.
24. Harris LG, Foster SJ, Richards RG. 2002; An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: review. Eur Cell Mater. 4:39–60. DOI: 10.22203/eCM.v004a04. PMID: 14562246.
25. Park GH, Lee SY, Lee JB, Chang BS, Lee JK, Um HS. 2023; Effect of photodynamic therapy according to differences in photosensitizers on Staphylococcus aureus biofilm on titanium. Photodiagnosis Photodyn Ther. 41:103317. DOI: 10.1016/j.pdpdt.2023.103317. PMID: 36738904.
26. Azizi B, Budimir A, Bago I, Mehmeti B, Jakovljević S, Kelmendi J, Stanko AP, Gabrić D. 2018; Antimicrobial efficacy of photodynamic therapy and light-activated disinfection on contaminated zirconia implants: An in vitro study. Photodiagnosis Photodyn Ther. 21:328–33. DOI: 10.1016/j.pdpdt.2018.01.017. PMID: 29410255.
27. Anil S, Yahia ME, Alsarani MM, Alolayani BM, Alsadon O, Vellappally S, Hashem M, Fouad H. 2022; Antimicrobial efficacy and topographical alterations of photodynamic therapy versus conventional antimicrobials on contaminated zirconia ceramic in vitro. Photodiagnosis Photodyn Ther. 38:102804. DOI: 10.1016/j.pdpdt.2022.102804. PMID: 35288322.
28. Roehling S, Astasov-Frauenhoffer M, Hauser-Gerspach I, Braissant O, Woelfler H, Waltimo T, Kniha H, Gahlert M. 2017; In Vitro Biofilm Formation on Titanium and Zirconia Implant Surfaces. J Periodontol. 88:298–307. DOI: 10.1902/jop.2016.160245. PMID: 27712464.
29. Pérez-Tanoira R, Horwat D, Kinnari TJ, Pérez-Jorge C, Gómez-Barrena E, Migot S, Esteban J. 2016; Bacterial adhesion on biomedical surfaces covered by yttria stabilized zirconia. J Mater Sci Mater Med. 27:6. DOI: 10.1007/s10856-015-5625-x. PMID: 26610929.
Full Text Links
  • JDRAS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr