J Dent Rehabil Appl Sci.  2024 May;40(2):55-63. 10.14368/jdras.2024.40.2.55.

Antimicrobial effect of infrared diode laser utilizing indocyanine green against Staphylococcus aureus biofilm on titanium surface

Affiliations
  • 1Department of Periodontology and Research Institute for Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung, Republic of Korea
  • 2Department of Oral Microbiology and Research Institute for Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung, Republic of Korea

Abstract

Purpose
This study aimed to assess the antimicrobial efficacy of an 810-nm infrared diode laser with indocyanine green (ICG) against Staphylococcus aureus on sandblasted, large grit, and acid-etched (SLA) titanium surfaces, comparing its effectiveness with alternative chemical decontamination modalities.
Materials and Methods
Biofilms of S. aureus ATCC 25923 were cultured on SLA titanium disks for 48 hours. The biofilms were divided into five treatment groups: control, chlorhexidine gluconate (CHX), tetracycline (TC), ICG, and 810-nm infrared diode laser with ICG (ICG-PDT). After treatment, colony-forming units were quantified to assess surviving bacteria, and viability was confirmed through confocal laser-scanning microscope (CLSM) imaging.
Results
All treated groups exhibited a statistically significant reduction in S. aureus (P < 0.05), with notable efficacy in the CHX, TC, and ICG-PDT groups (P < 0.01). While no statistical difference was observed between TC and CHX, the ICG-PDT group demonstrated superior bacterial reduction. CLSM images revealed a higher proportion of dead bacteria stained in red within the ICG-PDT groups.
Conclusion
Within the limitations, ICG-PDT effectively reduced S. aureus biofilms on SLA titanium surfaces. Further investigations into alternative decontamination methods and the clinical impact of ICG-PDT on peri-implant diseases are warranted.

Keyword

indocyanine green; photochemotherapy; photothermal therapy; Staphylococcus aureus; titanium

Figure

  • Fig. 1 Comparison of log-transformed value of CFU/mL. * P < 0.05: when comparing control with ICG, and TC with ICG-PDT. ** P < 0.01: when comparing control and ICG with CHX, TC, and ICG-PDT. CHX: chlorhexidine; TC: tetracycline; ICG: indocyanine green; ICG-PDT: photodynamic therapy using ICG.

  • Fig. 2 Confocal laser-scanning microscope images of S. aureus biofilm on Ti disk (original magnification, 10x). Live and dead bacteria are stained green and red, respectively. Among these groups, the ICG-PDT group’s images revealed a relatively higher number of dead bacteria stained in red compared to the other groups. (A) Control group, (B) Chlorhexidine group (CHX), (C) Tetracycline group (TC), (D) Indocyanine green group (ICG), (E) Photodynamic therapy using ICG group (ICG-PDT).


Reference

References

1. Lee CT, Huang YW, Zhu L, Weltman R. 2017; Prevalences of peri-implantitis and peri-implant mucositis: systematic review and meta-analysis. J Dent. 62:1–12. DOI: 10.1016/j.jdent.2017.04.011. PMID: 28478213.
Article
2. Lindhe J, Meyle J. 2008; Peri-implant diseases: Consensus Report of the Sixth European Workshop on Periodontology. J Clin Periodontol. 35(8 Suppl):282–5. DOI: 10.1111/j.1600-051X.2008.01283.x. PMID: 18724855.
Article
3. Giffi R, Pietropaoli D, Mancini L, Tarallo F, Sahrmann P, Marchetti E. 2023; The efficacy of different implant surface decontamination methods using spectrophotometric analysis: an in vitro study. J Periodontal Implant Sci. 53:295–305. DOI: 10.5051/jpis.2203500175. PMID: 36731864. PMCID: PMC10465813.
Article
4. Claffey N, Clarke E, Polyzois I, Renvert S. 2008; Surgical treatment of peri-implantitis. J Clin Periodontol. 35(8 Suppl):316–32. DOI: 10.1111/j.1600-051X.2008.01277.x. PMID: 18724859.
Article
5. Sculean A, Deppe H, Miron R, Schwarz F, Romanos G, Cosgarea R. 2021; Effectiveness of Photodynamic Therapy in the Treatment of Periodontal and Peri-Implant Diseases. Monogr Oral Sci. 29:133–43. DOI: 10.1159/000510189. PMID: 33427227.
Article
6. Konopka K, Goslinski T. 2007; Photodynamic therapy in dentistry. J Dent Res. 86:694–707. DOI: 10.1177/154405910708600803. PMID: 17652195.
Article
7. Cho K, Lee SY, Chang BS, Um HS, Lee JK. 2015; The effect of photodynamic therapy on Aggregatibacter actinomycetemcomitans attached to surface-modified titanium. J Periodontal Implant Sci. 45:38–45. DOI: 10.5051/jpis.2015.45.2.38. PMID: 25932337. PMCID: PMC4415000.
Article
8. Shirata C, Kaneko J, Inagaki Y, Kokudo T, Sato M, Kiritani S, Akamatsu N, Arita J, Sakamoto Y, Hasegawa K, Kokudo N. 2017; Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress. Sci Rep. 7:13958. DOI: 10.1038/s41598-017-14401-0. PMID: 29066756. PMCID: PMC5654824.
Article
9. Boehm TK, Ciancio SG. 2011; Diode laser activated indocyanine green selectively kills bacteria. J Int Acad Periodontol. 13:58–63.
10. Monzavi A, Chinipardaz Z, Mousavi M, Fekrazad R, Moslemi N, Azaripour A, Bagherpasand O, Chiniforush N. 2016; Antimicrobial photodynamic therapy using diode laser activated indocyanine green as an adjunct in the treatment of chronic periodontitis: A randomized clinical trial. Photodiagnosis Photodyn Ther. 14:93–7. DOI: 10.1016/j.pdpdt.2016.02.007. PMID: 26921460.
Article
11. Bashir NZ, Singh HA, Virdee SS. 2021; Indocyanine green-mediated antimicrobial photodynamic therapy as an adjunct to periodontal therapy: a systematic review and meta-analysis. Clin Oral Investig. 25:5699–710. DOI: 10.1007/s00784-021-03871-2. PMID: 33710461. PMCID: PMC8443506.
Article
12. Subramani K, Jung RE, Molenberg A, Hammerle CH. 2009; Biofilm on dental implants: a review of the literature. Int J Oral Maxillofac Implants. 24:616–26.
13. Mombelli A, Décaillet F. 2011; The characteristics of biofilms in peri-implant disease. J Clin Periodontol. 38 Suppl 11:203–13. DOI: 10.1111/j.1600-051X.2010.01666.x. PMID: 21323716.
Article
14. Wu-Yuan CD, Eganhouse KJ, Keller JC, Walters KS. 1995; Oral bacterial attachment to titanium surfaces: a scanning electron microscopy study. J Oral Implantol. 21:207–13.
15. Roehling S, Astasov-Frauenhoffer M, Hauser-Gerspach I, Braissant O, Woelfler H, Waltimo T, Kniha H, Gahlert M. 2017; In Vitro Biofilm Formation on Titanium and Zirconia Implant Surfaces. J Periodontol. 88:298–307. DOI: 10.1902/jop.2016.160245. PMID: 27712464.
Article
16. Almaguer-Flores A, Olivares-Navarrete R, Wieland M, Ximénez-Fyvie LA, Schwartz Z, Boyan BD. 2012; Influence of topography and hydrophilicity on initial oral biofilm formation on microstructured titanium surfaces in vitro. Clin Oral Implants Res. 23:301–7. DOI: 10.1111/j.1600-0501.2011.02184.x. PMID: 21492236. PMCID: PMC4287405.
17. Christensen GD, Baddour LM, Hasty DL, Lowrance JH, Simpson WA. Bisno AL, Waldvogel FA, editors. Microbial and foreign body factors in the pathogenesis of medical device infections. Infections associated with indwelling medical devices. Washington: American Society for Microbiology;1989. p. 27–59.
18. Lister JL, Horswill AR. 2014; Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol. 4:178. DOI: 10.3389/fcimb.2014.00178. PMID: 25566513. PMCID: PMC4275032.
Article
19. Kronström M, Svensson B, Erickson E, Houston L, Braham P, Persson GR. 2000; Humoral immunity host factors in subjects with failing or successful titanium dental implants. J Clin Periodontol. 27:875–82. DOI: 10.1034/j.1600-051x.2000.027012875.x. PMID: 11140553.
Article
20. Persson GR, Renvert S. 2014; Cluster of bacteria associated with peri-implantitis. Clin Implant Dent Relat Res. 16:783–93. DOI: 10.1111/cid.12052. PMID: 23527870.
Article
21. Salvi GE, Fürst MM, Lang NP, Persson GR. 2008; One-year bacterial colonization patterns of Staphylococcus aureus and other bacteria at implants and adjacent teeth. Clin Oral Implants Res. 19:242–8. DOI: 10.1111/j.1600-0501.2007.01470.x. PMID: 18177429.
22. Topaloglu N, Gulsoy M, Yuksel S. 2013; Antimicrobial photodynamic therapy of resistant bacterial strains by indocyanine green and 809-nm diode laser. Photomed Laser Surg. 31:155–62. DOI: 10.1089/pho.2012.3430. PMID: 23402392.
Article
23. Wong TW, Liao SZ, Ko WC, Wu CJ, Wu SB, Chuang YC, Huang IH. 2019; Indocyanine Green - Mediated Photodynamic Therapy Reduces Methicillin-Resistant Staphylococcus aureus Drug Resistance. J Clin Med. 8:411. DOI: 10.3390/jcm8030411. PMID: 30934605. PMCID: PMC6463108.
Article
24. Park GH, Lee SY, Lee JB, Chang BS, Lee JK, Um HS. 2023; Effect of photodynamic therapy according to differences in photosensitizers on Staphylococcus aureus biofilm on titanium. Photodiagnosis Photodyn Ther. 41:103317. DOI: 10.1016/j.pdpdt.2023.103317. PMID: 36738904.
Article
25. Beytollahi L, Pourhajibagher M, Chiniforush N, Ghorbanzadeh R, Raoofian R, Pourakbari B, Bahador A. 2017; The efficacy of photodynamic and photothermal therapy on biofilm formation of Streptococcus mutans: An in vitro study. Photodiagnosis Photodyn Ther. 17:56–60. DOI: 10.1016/j.pdpdt.2016.10.006. PMID: 27769914.
Article
26. Golmohamadpour A, Bahramian B, Khoobi M, Pourhajibagher M, Barikani HR, Bahador A. 2018; Antimicrobial photodynamic therapy assessment of three indocyanine green-loaded metal-organic frameworks against Enterococcus faecalis. Photodiagnosis Photodyn Ther. 23:331–8. DOI: 10.1016/j.pdpdt.2018.08.004. PMID: 30077652.
Article
27. Fekrazad R, Karamifar K, Bahador A. 2016; Comparison of antibacterial effect of photodynamic therapy using indocyanine green (Emundo) with 2% metronidazole and 2% chlorhexidine gel on Porphyromonas gingivalis (an in-vitro study). Photodiagnosis Photodyn Ther. 15:28–33. DOI: 10.1016/j.pdpdt.2016.04.003. PMID: 27129870.
Article
28. Shim SH, Lee SY, Lee JB, Chang BS, Lee JK, Um HS. 2022; Antimicrobial photothermal therapy using diode laser with indocyanine green on Streptococcus gordonii biofilm attached to zirconia surface. Photodiagnosis Photodyn Ther. 38:102767. DOI: 10.1016/j.pdpdt.2022.102767. PMID: 35182778.
Article
29. Burchard T, Karygianni L, Hellwig E, Follo M, Wrbas T, Wittmer A, Vach K, Al-Ahmad A. 2019; Inactivation of oral biofilms using visible light and water-filtered infrared A radiation and indocyanine green. Future Med Chem. 11:1721–39. DOI: 10.4155/fmc-2018-0522. PMID: 31368351.
Article
30. Hopp M, Biffar R. 2013; Photodynamic therapies - blue versus green. Laser. 1:10–25.
31. Albrektsson T, Wennerberg A. 2019; On osseointegration in relation to implant surfaces. Clin Implant Dent Relat Res. 21 Suppl 1:4–7. DOI: 10.1111/cid.12742. PMID: 30816639.
Article
32. Lin HY, Liu Y, Wismeijer D, Crielaard W, Deng DM. 2013; Effects of oral implant surface roughness on bacterial biofilm formation and treatment efficacy. Int J Oral Maxillofac Implants. 28:1226–31. DOI: 10.11607/jomi.3099. PMID: 24066312.
Article
33. Sanz-Martín I, Paeng K, Park H, Cha JK, Jung UW, Sanz M. 2021; Significance of implant design on the efficacy of different peri-implantitis decontamination protocols. Clin Oral Investig. 25:3589–97. DOI: 10.1007/s00784-020-03681-y. PMID: 33170374.
Article
Full Text Links
  • JDRAS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr