Int J Stem Cells.  2024 Nov;17(4):337-346. 10.15283/ijsc23075.

Gastric Organoid, a Promising Modeling for Gastric Stem Cell Homeostasis and Therapeutic Application

Affiliations
  • 1Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Korea
  • 2Center for Genome Engineering, Institute for Basic Science, Daejeon, Korea
  • 3Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Korea

Abstract

The elucidation of the pathophysiology underlying various diseases necessitates the development of research platforms that faithfully mimic in vivo conditions. Traditional model systems such as two-dimensional cell cultures and animal models have proven inadequate in capturing the complexities of human disease modeling. However, recent strides in organoid culture systems have opened up new avenues for comprehending gastric stem cell homeostasis and associated diseases, notably gastric cancer. Given the significance of gastric cancer, a thorough understanding of its pathophysiology and molecular underpinnings is imperative. To this end, the utilization of patient-derived organoid libraries emerges as a remarkable platform, as it faithfully mirrors patient-specific characteristics, including mutation profiles and drug sensitivities. Furthermore, genetic manipulation of gastric organoids facilitates the exploration of molecular mechanisms underlying gastric cancer development. This review provides a comprehensive overview of recent advancements in various adult stem cell-derived gastric organoid models and their diverse applications.

Keyword

Organoids; Stem cells; Homeostasis; Disease; Therapeutics

Figure

  • Fig. 1 The epithelial architecture of the stomach. It is illustrating the intricate cellular arrangement and organization within the corpus epithelium, emphasizing the presence of distinct layers and cell types. ECL: enterochromaffin-like.

  • Fig. 2 Overview of gastric organoid establishment and its applications. Adult stem cell-derived organoid established from healthy individual biopsy or patients. Pluripotent stem cell-derived organoids utilize embryonic stem cell (ESC) or induced pluripotent stem cell (iPSC) for organoid establishment which follow the stomach development process. The successfully established organoids are maintained in the extracellular matrix with organ-specific growth factor supplements and stored at an organoid biobank. The organoid biobank has diverse applications, such as gene editing, which can be further utilized for patient organoid therapy, drug screening and development for personalized medicine, disease modelling, basic research, etc.

  • Fig. 3 Expectation of organoid-based drug development. The conventional drug development process begins with disease information followed by target selection altered in the disease condition. Once the target is selected, primary in vitro screening will be performed to search candidate compounds for pre-clinical trials. Then, in vitro hit validation with primary candidates finalize candidates for pre-clinical trials with animal models. Successful candidates after the pre-clinical trial will be transferred to a clinical trial. However, organoid-mediated drug development is initiated with a group of patients with the disease. Patient-derived organoids (PDOs) will be established and stored at an organoid biobank. Drug screening using the PDO library will discover effective drugs for the disease, and successful drug candidates will be introduced for clinical trials.


Reference

References

1. Soybel DI. 2005; Anatomy and physiology of the stomach. Surg Clin North Am. 85:875–894. DOI: 10.1016/j.suc.2005.05.009. PMID: 16139026.
2. Schepers A, Clevers H. 2012; Wnt signaling, stem cells, and cancer of the gastrointestinal tract. Cold Spring Harb Perspect Biol. 4:a007989. DOI: 10.1101/cshperspect.a007989. PMID: 22474007. PMCID: PMC3312683.
3. Bartfeld S, Koo BK. 2017; Adult gastric stem cells and their niches. Wiley Interdiscip Rev Dev Biol. 6:e261. DOI: 10.1002/wdev.261. PMID: 28044412.
4. Koelz HR. 1992; Gastric acid in vertebrates. Scand J Gastroenterol Suppl. 193:2–6. DOI: 10.3109/00365529209095998. PMID: 1290053.
5. Karam SM, Leblond CP. 1993; Dynamics of epithelial cells in the corpus of the mouse stomach. II. Outward migration of pit cells. Anat Rec. 236:280–296. DOI: 10.1002/ar.1092360203. PMID: 8338233.
6. Mills JC, Shivdasani RA. 2011; Gastric epithelial stem cells. Gas-troenterology. 140:412–424. DOI: 10.1053/j.gastro.2010.12.001. PMID: 21144849. PMCID: PMC3708552.
7. Hoffmann W. 2013; Self-renewal of the gastric epithelium from stem and progenitor cells. Front Biosci (Schol Ed). 5:720–731. DOI: 10.2741/S402. PMID: 23277081.
8. Xiao S, Zhou L. 2020; Gastric stem cells: physiological and path-ological perspectives. Front Cell Dev Biol. 8:571536. DOI: 10.3389/fcell.2020.571536. PMID: 33043003. PMCID: PMC7527738.
9. Clevers H. 2016; Modeling development and disease with orga-noids. Cell. 165:1586–1597. DOI: 10.1016/j.cell.2016.05.082. PMID: 27315476.
10. Kim J, Koo BK, Knoblich JA. 2020; Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 21:571–584. DOI: 10.1038/s41580-020-0259-3. PMID: 32636524. PMCID: PMC7339799.
11. Yang R, Yu Y. 2023; Patient-derived organoids in translational oncology and drug screening. Cancer Lett. 562:216180. DOI: 10.1016/j.canlet.2023.216180. PMID: 37061121.
12. Wadman M. 2023; FDA no longer has to require animal testing for new drugs. Science. 379:127–128. DOI: 10.1126/science.adg6276. PMID: 36634170.
13. Schutgens F, Clevers H. 2020; Human organoids: tools for understanding biology and treating diseases. Annu Rev Pathol. 15:211–234. DOI: 10.1146/annurev-pathmechdis-012419-032611. PMID: 31550983.
14. Sato T, Vries RG, Snippert HJ, et al. 2009; Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459:262–265. DOI: 10.1038/nature07935. PMID: 19329995.
15. Zeve D, Stas E, de Sousa Casal J, et al. 2022; Robust differen-tiation of human enteroendocrine cells from intestinal stem cells. Nat Commun. 13:261. DOI: 10.1038/s41467-021-27901-5. PMID: 35017529. PMCID: PMC8752608.
16. Fujii M, Matano M, Toshimitsu K, et al. 2018; Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell. 23:787–793.e6. DOI: 10.1016/j.stem.2018.11.016. PMID: 30526881.
17. Barker N, Huch M, Kujala P, et al. 2010; Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 6:25–36. DOI: 10.1016/j.stem.2009.11.013. PMID: 20085740.
18. Stange DE, Koo BK, Huch M, et al. 2013; Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell. 155:357–368. DOI: 10.1016/j.cell.2013.09.008. PMID: 24120136. PMCID: PMC4094146.
19. Gifford GB, Demitrack ES, Keeley TM, et al. 2017; Notch1 and Notch2 receptors regulate mouse and human gastric antral epithelial cell homoeostasis. Gut. 66:1001–1011. DOI: 10.1136/gutjnl-2015-310811. PMID: 26933171. PMCID: PMC5009003.
20. Bartfeld S, Bayram T, van de Wetering M, et al. 2015; In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology. 148:126–136.e6. DOI: 10.1053/j.gastro.2014.09.042. PMID: 25307862. PMCID: PMC4274199.
21. McCracken KW, Catá EM, Crawford CM, et al. 2014; Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature. 516:400–404. DOI: 10.1038/nature13863. PMID: 25363776. PMCID: PMC4270898.
22. McCracken KW, Aihara E, Martin B, et al. 2017; Wnt/β-catenin promotes gastric fundus specification in mice and humans. Nature. 541:182–187. DOI: 10.1038/nature21021. PMID: 28052057. PMCID: PMC5526592.
23. Broda TR, McCracken KW, Wells JM. 2019; Generation of human antral and fundic gastric organoids from pluripotent stem cells. Nat Protoc. 14:28–50. DOI: 10.1038/s41596-018-0080-z. PMID: 30470820. PMCID: PMC7951181.
24. Noguchi TK, Ninomiya N, Sekine M, et al. 2015; Generation of stomach tissue from mouse embryonic stem cells. Nat Cell Biol. 17:984–993. DOI: 10.1038/ncb3200. PMID: 26192439.
25. Schumacher MA, Aihara E, Feng R, et al. 2015; The use of murine-derived fundic organoids in studies of gastric physio-logy. J Physiol. 593:1809–1827. DOI: 10.1113/jphysiol.2014.283028. PMID: 25605613. PMCID: PMC4405744.
26. Lee KK, McCauley HA, Broda TR, Kofron MJ, Wells JM, Hong CI. 2018; Human stomach-on-a-chip with luminal flow and peristaltic-like motility. Lab Chip. 18:3079–3085. DOI: 10.1039/C8LC00910D. PMID: 30238091. PMCID: PMC6364752.
27. Baptista LS, Porrini C, Kronemberger GS, Kelly DJ, Perrault CM. 2022; 3D organ-on-a-chip: the convergence of microphysiological systems and organoids. Front Cell Dev Biol. 10:1043117. DOI: 10.3389/fcell.2022.1043117. PMID: 36478741. PMCID: PMC9720174.
28. Wensink GE, Elias SG, Mullenders J, et al. 2021; Patient-derived organoids as a predictive biomarker for treatment response in cancer patients. NPJ Precis Oncol. 5:30. DOI: 10.1038/s41698-021-00168-1. PMID: 33846504. PMCID: PMC8042051.
29. Verduin M, Hoeben A, De Ruysscher D, Vooijs M. 2021; Patient-derived cancer organoids as predictors of treatment response. Front Oncol. 11:641980. DOI: 10.3389/fonc.2021.641980. PMID: 33816288. PMCID: PMC8012903.
30. van de Wetering M, Francies HE, Francis JM, et al. 2015; Pro-spective derivation of a living organoid biobank of colorectal cancer patients. Cell. 161:933–945. DOI: 10.1016/j.cell.2015.03.053. PMID: 25957691. PMCID: PMC6428276.
31. Seidlitz T, Merker SR, Rothe A, et al. 2019; Human gastric cancer modelling using organoids. Gut. 68:207–217. DOI: 10.1136/gutjnl-2017-314549. PMID: 29703791. PMCID: PMC6352409.
32. Vlachogiannis G, Hedayat S, Vatsiou A, et al. 2018; Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 359:920–926. DOI: 10.1126/science.aao2774. PMID: 29472484. PMCID: PMC6112415.
33. Nanki K, Toshimitsu K, Takano A, et al. 2018; Divergent routes toward Wnt and R-spondin niche independency during human gastric carcinogenesis. Cell. 174:856–869.e17. DOI: 10.1016/j.cell.2018.07.027. PMID: 30096312.
34. Yan HHN, Siu HC, Law S, et al. 2018; A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell. 23:882–897.e11. DOI: 10.1016/j.stem.2018.09.016. PMID: 30344100.
35. Song H, Park JY, Kim JH, et al. 2022; Establishment of patient-derived gastric cancer organoid model from tissue obtained by endoscopic biopsies. J Korean Med Sci. 37:e220. DOI: 10.3346/jkms.2022.37.e220. PMID: 35851862. PMCID: PMC9294503.
36. Xu H, Jiao D, Liu A, Wu K. 2022; Tumor organoids: applications in cancer modeling and potentials in precision medicine. J Hematol Oncol. 15:58. DOI: 10.1186/s13045-022-01278-4. PMID: 35551634. PMCID: PMC9103066.
37. Wallaschek N, Niklas C, Pompaiah M, et al. 2019; Establishing pure cancer organoid cultures: identification, selection and verification of cancer phenotypes and genotypes. J Mol Biol. 431:2884–2893. DOI: 10.1016/j.jmb.2019.05.031. PMID: 31150736.
38. Nesta AV, Tafur D, Beck CR. 2021; Hotspots of human mutation. Trends Genet. 37:717–729. DOI: 10.1016/j.tig.2020.10.003. PMID: 33199048. PMCID: PMC8366565.
39. Olafsson S, Anderson CA. 2021; Somatic mutations provide important and unique insights into the biology of complex diseases. Trends Genet. 37:872–881. DOI: 10.1016/j.tig.2021.06.012. PMID: 34226062.
40. Gammall J, Lai AG. 2022; Pan-cancer prognostic genetic mutations and clinicopathological factors associated with survival outcomes: a systematic review. NPJ Precis Oncol. 6:27. DOI: 10.1038/s41698-022-00269-5. PMID: 35444210. PMCID: PMC9021198.
41. Sachs N, de Ligt J, Kopper O, et al. 2018; A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 172:373–386.e10. DOI: 10.1016/j.cell.2017.11.010. PMID: 29224780.
42. Teriyapirom I, Batista-Rocha AS, Koo BK. 2021; Genetic engineering in organoids. J Mol Med (Berl). 99:555–568. DOI: 10.1007/s00109-020-02029-z. PMID: 33459801. PMCID: PMC8026415.
43. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. 2013; Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 8:2281–2308. DOI: 10.1038/nprot.2013.143. PMID: 24157548. PMCID: PMC3969860.
44. Seidlitz T, Chen YT, Uhlemann H, et al. 2019; Mouse models of human gastric cancer subtypes with stomach-specific CreERT2-mediated pathway alterations. Gastroenterology. 157:1599–1614.e2. DOI: 10.1053/j.gastro.2019.09.026. PMID: 31585123. PMCID: PMC6902245.
45. Chakrabarti J, Holokai L, Syu L, et al. 2018; Hedgehog signaling induces PD-L1 expression and tumor cell proliferation in gastric cancer. Oncotarget. 9:37439–37457. DOI: 10.18632/oncotarget.26473. PMID: 30647844. PMCID: PMC6324774.
46. Seidlitz T, Schmäche T, Garcίa F, et al. 2022; Sensitivity towards HDAC inhibition is associated with RTK/MAPK pathway activation in gastric cancer. EMBO Mol Med. 14:e15705. DOI: 10.15252/emmm.202215705. PMID: 35993110. PMCID: PMC9549728.
47. Fischer AS, Müllerke S, Arnold A, et al. 2022; R-spondin/YAP axis promotes gastric oxyntic gland regeneration and Helicobacter pylori-associated metaplasia in mice. J Clin Invest. 132:e151363. DOI: 10.1172/JCI151363. PMID: 36099044. PMCID: PMC9621134.
48. Lo YH, Kolahi KS, Du Y, et al. 2021; A CRISPR/Cas9-engi-neered ARID1A-deficient human gastric cancer organoid model reveals essential and nonessential modes of oncogenic transformation. Cancer Discov. 11:1562–1581. DOI: 10.1158/2159-8290.CD-20-1109. PMID: 33451982. PMCID: PMC8346515.
49. Takeda H, Kataoka S, Nakayama M, et al. 2019; CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. Proc Natl Acad Sci U S A. 116:15635–15644. DOI: 10.1073/pnas.1904714116. PMID: 31300537. PMCID: PMC6681705.
50. Dekkers JF, Wiegerinck CL, de Jonge HR, et al. 2013; A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med. 19:939–945. DOI: 10.1038/nm.3201. PMID: 23727931.
51. Hu H, Gehart H, Artegiani B, et al. 2018; Long-term expansion of functional mouse and human hepatocytes as 3D orga-noids. Cell. 175:1591–1606.e19. DOI: 10.1016/j.cell.2018.11.013. PMID: 30500538.
52. Zhou Z, Cong L, Cong X. 2021; Patient-derived organoids in precision medicine: drug screening, organoid-on-a-chip and living organoid biobank. Front Oncol. 11:762184. DOI: 10.3389/fonc.2021.762184. PMID: 35036354. PMCID: PMC8755639.
53. Driehuis E, Kretzschmar K, Clevers H. 2020; Establishment of patient-derived cancer organoids for drug-screening appli-cations. Nat Protoc. 15:3380–3409. DOI: 10.1038/s41596-020-0379-4. PMID: 32929210.
54. Zhao Z, Chen X, Dowbaj AM, et al. 2022; Organoids. Nat Rev Methods Primers. 2:94. DOI: 10.1038/s43586-022-00174-y. PMID: 37325195. PMCID: PMC10270325.
55. Mayhew CN, Singhania R. 2023; A review of protocols for brain organoids and applications for disease modeling. STAR Protoc. 4:101860. DOI: 10.1016/j.xpro.2022.101860. PMID: 36566384. PMCID: PMC9803834.
56. Toshimitsu K, Takano A, Fujii M, et al. 2022; Organoid screening reveals epigenetic vulnerabilities in human colorectal cancer. Nat Chem Biol. 18:605–614. DOI: 10.1038/s41589-022-00984-x. PMID: 35273398.
57. Mittal R, Woo FW, Castro CS, et al. 2019; Organ-on-chip models: implications in drug discovery and clinical applications. J Cell Physiol. 234:8352–8380. DOI: 10.1002/jcp.27729. PMID: 30443904.
58. Skardal A, Aleman J, Forsythe S, et al. 2020; Drug compound screening in single and integrated multi-organoid body-on-a-chip systems. Biofabrication. 12:025017. DOI: 10.1088/1758-5090/ab6d36. PMID: 32101533.
59. Shalem O, Sanjana NE, Zhang F. 2015; High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet. 16:299–311. DOI: 10.1038/nrg3899. PMID: 25854182. PMCID: PMC4503232.
60. Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera Mdel C, Yusa K. 2014; Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol. 32:267–273. DOI: 10.1038/nbt.2800. PMID: 24535568.
61. Shalem O, Sanjana NE, Hartenian E, et al. 2014; Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 343:84–87. DOI: 10.1126/science.1247005. PMID: 24336571. PMCID: PMC4089965.
62. Wang T, Wei JJ, Sabatini DM, Lander ES. 2014; Genetic screens in human cells using the CRISPR-Cas9 system. Science. 343:80–84. DOI: 10.1126/science.1246981. PMID: 24336569. PMCID: PMC3972032.
63. Ringel T, Frey N, Ringnalda F, et al. 2020; Genome-scale CRISPR screening in human intestinal organoids identifies drivers of TGF-β resistance. Cell Stem Cell. 26:431–440.e8. DOI: 10.1016/j.stem.2020.02.007. PMID: 32142663.
64. Murakami K, Terakado Y, Saito K, et al. 2021; A genome-scale CRISPR screen reveals factors regulating Wnt-dependent renewal of mouse gastric epithelial cells. Proc Natl Acad Sci U S A. 118:e2016806118. DOI: 10.1073/pnas.2016806118. PMID: 33479180. PMCID: PMC7848749.
65. Ungricht R, Guibbal L, Lasbennes MC, et al. 2022; Genome-wide screening in human kidney organoids identifies develop-mental and disease-related aspects of nephrogenesis. Cell Stem Cell. 29:160–175.e7. DOI: 10.1016/j.stem.2021.11.001. PMID: 34847364.
66. Michels BE, Mosa MH, Streibl BI, et al. 2020; Pooled in vitro and in vivo CRISPR-Cas9 screening identifies tumor suppre-ssors in human colon organoids. Cell Stem Cell. 26:782–792.e7. DOI: 10.1016/j.stem.2020.04.003. PMID: 32348727.
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr