3. Bartfeld S, Koo BK. 2017; Adult gastric stem cells and their niches. Wiley Interdiscip Rev Dev Biol. 6:e261. DOI:
10.1002/wdev.261. PMID:
28044412.
5. Karam SM, Leblond CP. 1993; Dynamics of epithelial cells in the corpus of the mouse stomach. II. Outward migration of pit cells. Anat Rec. 236:280–296. DOI:
10.1002/ar.1092360203. PMID:
8338233.
7. Hoffmann W. 2013; Self-renewal of the gastric epithelium from stem and progenitor cells. Front Biosci (Schol Ed). 5:720–731. DOI:
10.2741/S402. PMID:
23277081.
14. Sato T, Vries RG, Snippert HJ, et al. 2009; Single Lgr5 stem cells build crypt-villus structures
in vitro without a mesenchymal niche. Nature. 459:262–265. DOI:
10.1038/nature07935. PMID:
19329995.
15. Zeve D, Stas E, de Sousa Casal J, et al. 2022; Robust differen-tiation of human enteroendocrine cells from intestinal stem cells. Nat Commun. 13:261. DOI:
10.1038/s41467-021-27901-5. PMID:
35017529. PMCID:
PMC8752608.
16. Fujii M, Matano M, Toshimitsu K, et al. 2018; Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell. 23:787–793.e6. DOI:
10.1016/j.stem.2018.11.016. PMID:
30526881.
17. Barker N, Huch M, Kujala P, et al. 2010; Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units
in vitro. Cell Stem Cell. 6:25–36. DOI:
10.1016/j.stem.2009.11.013. PMID:
20085740.
18. Stange DE, Koo BK, Huch M, et al. 2013; Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell. 155:357–368. DOI:
10.1016/j.cell.2013.09.008. PMID:
24120136. PMCID:
PMC4094146.
19. Gifford GB, Demitrack ES, Keeley TM, et al. 2017; Notch1 and Notch2 receptors regulate mouse and human gastric antral epithelial cell homoeostasis. Gut. 66:1001–1011. DOI:
10.1136/gutjnl-2015-310811. PMID:
26933171. PMCID:
PMC5009003.
20. Bartfeld S, Bayram T, van de Wetering M, et al. 2015;
In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology. 148:126–136.e6. DOI:
10.1053/j.gastro.2014.09.042. PMID:
25307862. PMCID:
PMC4274199.
21. McCracken KW, Catá EM, Crawford CM, et al. 2014; Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature. 516:400–404. DOI:
10.1038/nature13863. PMID:
25363776. PMCID:
PMC4270898.
22. McCracken KW, Aihara E, Martin B, et al. 2017; Wnt/β-catenin promotes gastric fundus specification in mice and humans. Nature. 541:182–187. DOI:
10.1038/nature21021. PMID:
28052057. PMCID:
PMC5526592.
23. Broda TR, McCracken KW, Wells JM. 2019; Generation of human antral and fundic gastric organoids from pluripotent stem cells. Nat Protoc. 14:28–50. DOI:
10.1038/s41596-018-0080-z. PMID:
30470820. PMCID:
PMC7951181.
24. Noguchi TK, Ninomiya N, Sekine M, et al. 2015; Generation of stomach tissue from mouse embryonic stem cells. Nat Cell Biol. 17:984–993. DOI:
10.1038/ncb3200. PMID:
26192439.
26. Lee KK, McCauley HA, Broda TR, Kofron MJ, Wells JM, Hong CI. 2018; Human stomach-on-a-chip with luminal flow and peristaltic-like motility. Lab Chip. 18:3079–3085. DOI:
10.1039/C8LC00910D. PMID:
30238091. PMCID:
PMC6364752.
27. Baptista LS, Porrini C, Kronemberger GS, Kelly DJ, Perrault CM. 2022; 3D organ-on-a-chip: the convergence of microphysiological systems and organoids. Front Cell Dev Biol. 10:1043117. DOI:
10.3389/fcell.2022.1043117. PMID:
36478741. PMCID:
PMC9720174.
28. Wensink GE, Elias SG, Mullenders J, et al. 2021; Patient-derived organoids as a predictive biomarker for treatment response in cancer patients. NPJ Precis Oncol. 5:30. DOI:
10.1038/s41698-021-00168-1. PMID:
33846504. PMCID:
PMC8042051.
29. Verduin M, Hoeben A, De Ruysscher D, Vooijs M. 2021; Patient-derived cancer organoids as predictors of treatment response. Front Oncol. 11:641980. DOI:
10.3389/fonc.2021.641980. PMID:
33816288. PMCID:
PMC8012903.
30. van de Wetering M, Francies HE, Francis JM, et al. 2015; Pro-spective derivation of a living organoid biobank of colorectal cancer patients. Cell. 161:933–945. DOI:
10.1016/j.cell.2015.03.053. PMID:
25957691. PMCID:
PMC6428276.
32. Vlachogiannis G, Hedayat S, Vatsiou A, et al. 2018; Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 359:920–926. DOI:
10.1126/science.aao2774. PMID:
29472484. PMCID:
PMC6112415.
33. Nanki K, Toshimitsu K, Takano A, et al. 2018; Divergent routes toward Wnt and R-spondin niche independency during human gastric carcinogenesis. Cell. 174:856–869.e17. DOI:
10.1016/j.cell.2018.07.027. PMID:
30096312.
34. Yan HHN, Siu HC, Law S, et al. 2018; A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell. 23:882–897.e11. DOI:
10.1016/j.stem.2018.09.016. PMID:
30344100.
35. Song H, Park JY, Kim JH, et al. 2022; Establishment of patient-derived gastric cancer organoid model from tissue obtained by endoscopic biopsies. J Korean Med Sci. 37:e220. DOI:
10.3346/jkms.2022.37.e220. PMID:
35851862. PMCID:
PMC9294503.
37. Wallaschek N, Niklas C, Pompaiah M, et al. 2019; Establishing pure cancer organoid cultures: identification, selection and verification of cancer phenotypes and genotypes. J Mol Biol. 431:2884–2893. DOI:
10.1016/j.jmb.2019.05.031. PMID:
31150736.
39. Olafsson S, Anderson CA. 2021; Somatic mutations provide important and unique insights into the biology of complex diseases. Trends Genet. 37:872–881. DOI:
10.1016/j.tig.2021.06.012. PMID:
34226062.
40. Gammall J, Lai AG. 2022; Pan-cancer prognostic genetic mutations and clinicopathological factors associated with survival outcomes: a systematic review. NPJ Precis Oncol. 6:27. DOI:
10.1038/s41698-022-00269-5. PMID:
35444210. PMCID:
PMC9021198.
41. Sachs N, de Ligt J, Kopper O, et al. 2018; A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 172:373–386.e10. DOI:
10.1016/j.cell.2017.11.010. PMID:
29224780.
43. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. 2013; Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 8:2281–2308. DOI:
10.1038/nprot.2013.143. PMID:
24157548. PMCID:
PMC3969860.
44. Seidlitz T, Chen YT, Uhlemann H, et al. 2019; Mouse models of human gastric cancer subtypes with stomach-specific CreERT2-mediated pathway alterations. Gastroenterology. 157:1599–1614.e2. DOI:
10.1053/j.gastro.2019.09.026. PMID:
31585123. PMCID:
PMC6902245.
45. Chakrabarti J, Holokai L, Syu L, et al. 2018; Hedgehog signaling induces PD-L1 expression and tumor cell proliferation in gastric cancer. Oncotarget. 9:37439–37457. DOI:
10.18632/oncotarget.26473. PMID:
30647844. PMCID:
PMC6324774.
46. Seidlitz T, Schmäche T, Garcίa F, et al. 2022; Sensitivity towards HDAC inhibition is associated with RTK/MAPK pathway activation in gastric cancer. EMBO Mol Med. 14:e15705. DOI:
10.15252/emmm.202215705. PMID:
35993110. PMCID:
PMC9549728.
47. Fischer AS, Müllerke S, Arnold A, et al. 2022; R-spondin/YAP axis promotes gastric oxyntic gland regeneration and Helicobacter pylori-associated metaplasia in mice. J Clin Invest. 132:e151363. DOI:
10.1172/JCI151363. PMID:
36099044. PMCID:
PMC9621134.
48. Lo YH, Kolahi KS, Du Y, et al. 2021; A CRISPR/Cas9-engi-neered
ARID1A-deficient human gastric cancer organoid model reveals essential and nonessential modes of oncogenic transformation. Cancer Discov. 11:1562–1581. DOI:
10.1158/2159-8290.CD-20-1109. PMID:
33451982. PMCID:
PMC8346515.
49. Takeda H, Kataoka S, Nakayama M, et al. 2019; CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. Proc Natl Acad Sci U S A. 116:15635–15644. DOI:
10.1073/pnas.1904714116. PMID:
31300537. PMCID:
PMC6681705.
50. Dekkers JF, Wiegerinck CL, de Jonge HR, et al. 2013; A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med. 19:939–945. DOI:
10.1038/nm.3201. PMID:
23727931.
51. Hu H, Gehart H, Artegiani B, et al. 2018; Long-term expansion of functional mouse and human hepatocytes as 3D orga-noids. Cell. 175:1591–1606.e19. DOI:
10.1016/j.cell.2018.11.013. PMID:
30500538.
52. Zhou Z, Cong L, Cong X. 2021; Patient-derived organoids in precision medicine: drug screening, organoid-on-a-chip and living organoid biobank. Front Oncol. 11:762184. DOI:
10.3389/fonc.2021.762184. PMID:
35036354. PMCID:
PMC8755639.
53. Driehuis E, Kretzschmar K, Clevers H. 2020; Establishment of patient-derived cancer organoids for drug-screening appli-cations. Nat Protoc. 15:3380–3409. DOI:
10.1038/s41596-020-0379-4. PMID:
32929210.
56. Toshimitsu K, Takano A, Fujii M, et al. 2022; Organoid screening reveals epigenetic vulnerabilities in human colorectal cancer. Nat Chem Biol. 18:605–614. DOI:
10.1038/s41589-022-00984-x. PMID:
35273398.
57. Mittal R, Woo FW, Castro CS, et al. 2019; Organ-on-chip models: implications in drug discovery and clinical applications. J Cell Physiol. 234:8352–8380. DOI:
10.1002/jcp.27729. PMID:
30443904.
58. Skardal A, Aleman J, Forsythe S, et al. 2020; Drug compound screening in single and integrated multi-organoid body-on-a-chip systems. Biofabrication. 12:025017. DOI:
10.1088/1758-5090/ab6d36. PMID:
32101533.
59. Shalem O, Sanjana NE, Zhang F. 2015; High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet. 16:299–311. DOI:
10.1038/nrg3899. PMID:
25854182. PMCID:
PMC4503232.
60. Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera Mdel C, Yusa K. 2014; Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol. 32:267–273. DOI:
10.1038/nbt.2800. PMID:
24535568.
63. Ringel T, Frey N, Ringnalda F, et al. 2020; Genome-scale CRISPR screening in human intestinal organoids identifies drivers of TGF-β resistance. Cell Stem Cell. 26:431–440.e8. DOI:
10.1016/j.stem.2020.02.007. PMID:
32142663.
64. Murakami K, Terakado Y, Saito K, et al. 2021; A genome-scale CRISPR screen reveals factors regulating Wnt-dependent renewal of mouse gastric epithelial cells. Proc Natl Acad Sci U S A. 118:e2016806118. DOI:
10.1073/pnas.2016806118. PMID:
33479180. PMCID:
PMC7848749.
65. Ungricht R, Guibbal L, Lasbennes MC, et al. 2022; Genome-wide screening in human kidney organoids identifies develop-mental and disease-related aspects of nephrogenesis. Cell Stem Cell. 29:160–175.e7. DOI:
10.1016/j.stem.2021.11.001. PMID:
34847364.
66. Michels BE, Mosa MH, Streibl BI, et al. 2020; Pooled
in vitro and
in vivo CRISPR-Cas9 screening identifies tumor suppre-ssors in human colon organoids. Cell Stem Cell. 26:782–792.e7. DOI:
10.1016/j.stem.2020.04.003. PMID:
32348727.