J Korean Diabetes.  2024 Sep;25(3):117-123. 10.4093/jkd.2024.25.3.117.

Gut Microbiota and Diabetes

Affiliations
  • 1Division of Endocrinology and Metabolism, Department of Internal Medicine, Chosun University Hospital, Chosun University School of Medicine, Gwangju, Korea

Abstract

Type 2 diabetes is rapidly increasing worldwide and is closely linked to factors such as obesity, genetic predispositions, and lifestyle choices. Recent studies emphasize the significant role of gut microbiota in the development and progression of diabetes and other related metabolic diseases. It is also known that the effects and side effects of antidiabetic drugs can be influenced by gut microbiota. Recently, various therapeutic strategies have aimed at modulating gut microbiota for health improvement. Key approaches include the use of probiotics to enhance the balance of beneficial bacteria and prebiotics, which are dietary fibers that promote the growth of these beneficial bacteria. Additionally, the potential of fecal microbiota transplantation in restoring a balanced microbiota composition in individuals with metabolic diseases are explored. This review highlights the promising potential of these interventions in the prevention and management of type 2 diabetes, suggesting that gut microbiota could be a novel and effective approach in diabetes treatment and control.

Keyword

Diabetes mellitus; Fecal microbiota transplantation; Gastrointestinal microbiome; Probiotics

Reference

1.Crudele L., Gadaleta RM., Cariello M., Moschetta A. Gut microbiota in the pathogenesis and therapeutic approaches of diabetes. EBioMedicine. 2023. 97:104821.
Article
2.Neveu V., Nicolas G., Amara A., Salek RM., Scalbert A. The human microbial exposome: expanding the Exposome-Explorer database with gut microbial metabolites. Sci Rep. 2023. 13:1946.
Article
3.Pedersen HK., Gudmundsdottir V., Nielsen HB., Hyotylainen T., Nielsen T., Jensen BA, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016. 535:376–81.
Article
4.Pitocco D., Di Leo M., Tartaglione L., De Leva F., Petru-zziello C., Saviano A, et al. The role of gut microbiota in mediating obesity and diabetes mellitus. Eur Rev Med Pharmacol Sci. 2020. 24:1548–62.
5.Le Chatelier E., Nielsen T., Qin J., Prifti E., Hildebrand F., Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013. 500:541–6.
Article
6.Turnbaugh PJ., Ley RE., Mahowald MA., Magrini V., Mardis ER., Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006. 444:1027–31.
Article
7.Turnbaugh PJ., Hamady M., Yatsunenko T., Cantarel BL., Duncan A., Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009. 457:480–4.
Article
8.Qin J., Li Y., Cai Z., Li S., Zhu J., Zhang F, et al. A metage-nome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012. 490:55–60.
Article
9.Karlsson FH., Fåk F., Nookaew I., Tremaroli V., Fagerberg B., Petranovic D, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun. 2012. 3:1245.
Article
10.Liu P., Wang Y., Yang G., Zhang Q., Meng L., Xin Y, et al. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol Res. 2021. 165:105420.
Article
11.LeBlanc JG., Milani C., de Giori GS., Sesma F., van Sinderen D., Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013. 24:160–8.
Article
12.Sanz Y., De Palma G. Gut microbiota and probiotics in modulation of epithelium and gut-associated lymphoid tissue function. Int Rev Immunol. 2009. 28:397–413.
Article
13.Larsen N., Vogensen FK., van den Berg FW., Nielsen DS., Andreasen AS., Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010. 5:e9085.
Article
14.Gurung M., Li Z., You H., Rodrigues R., Jump DB., Morgun A, et al. Role of gut microbiota in type 2 diabetes patho-physiology. EBioMedicine. 2020. 51:102590.
Article
15.Karlsson FH., Tremaroli V., Nookaew I., Bergström G., Behre CJ., Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013. 498:99–103.
Article
16.Li F., Jiang C., Krausz KW., Li Y., Albert I., Hao H, et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun. 2013. 4:2384.
Article
17.Zimmermann M., Zimmermann-Kogadeeva M., Wegmann R., Goodman AL. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature. 2019. 570:462–7.
Article
18.Hills RD Jr., Pontefract BA., Mishcon HR., Black CA., Sutton SC., Theberge CR. Gut microbiome: profound implications for diet and disease. Nutrients. 2019. 11:1613.
Article
19.Wu H., Esteve E., Tremaroli V., Khan MT., Caesar R., Mannerås-Holm L, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017. 23:850–8.
Article
20.Elbere I., Silamikelis I., Dindune II., Kalnina I., Ustinova M., Zaharenko L, et al. Baseline gut microbiome composition predicts metformin therapy short-term efficacy in newly diagnosed type 2 diabetes patients. PLoS One. 2020. 15:e0241338.
Article
21.Do HJ., Lee YS., Ha MJ., Cho Y., Yi H., Hwang YJ, et al. Beneficial effects of voglibose administration on body weight and lipid metabolism via gastrointestinal bile acid modification. Endocr J. 2016. 63:691–702.
Article
22.Smith BJ., Miller RA., Ericsson AC., Harrison DC., Strong R., Schmidt TM. Changes in the gut microbiome and fer-mentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiol. 2019. 19:130.
Article
23.De Matteis C., Crudele L., Battaglia S., Loconte T., Rotondo A., Ferrulli R, et al. Identification of a novel score for adherence to the mediterranean diet that is inversely associated with visceral adiposity and cardiovascular risk: the Chrono Med Diet Score (CMDS). Nutrients. 2023. 15:1910.
Article
24.Murphy EA., Velazquez KT., Herbert KM. Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk. Curr Opin Clin Nutr Metab Care. 2015. 18:515–20.
25.Adeshirlarijaney A., Gewirtz AT. Considering gut microbiota in treatment of type 2 diabetes mellitus. Gut Microbes. 2020. 11:253–64.
Article
26.Salgaço MK., Oliveira LGS., Costa GN., Bianchi F., Sivieri K. Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus. Appl Microbiol Biotechnol. 2019. 103:9229–38.
Article
27.Everard A., Lazarevic V., Derrien M., Girard M., Muccioli GG., Neyrinck AM, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. 2011. 60:2775–86.
Article
28.Scheithauer TPM., Rampanelli E., Nieuwdorp M., Vallance BA., Verchere CB., van Raalte DH, et al. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front Immunol. 2020. 11:571731.
Article
29.Fu J., Zheng Y., Gao Y., Xu W. Dietary fiber intake and gut microbiota in human health. Microorganisms. 2022. 10:2507.
Article
30.Sabico S., Al-Mashharawi A., Al-Daghri NM., Wani K., Amer OE., Hussain DS, et al. Effects of a 6-month multi-strain probiotics supplementation in endotoxemic, inflammatory and cardiometabolic status of T2DM patients: a randomized, double-blind, placebo-controlled trial. Clin Nutr. 2019. 38:1561–9.
Article
31.Szulińska M., Łoniewski I., Van Hemert S., Sobieska M., Bogdański P. Dose-dependent effects of multispecies pro-biotic supplementation on the lipopolysaccharide (LPS) level and cardiometabolic profile in obese postmenopausal women: a 12-week randomized clinical trial. Nutrients. 2018. 10:773.
Article
Full Text Links
  • JKD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr