4. Scott AJ, Alexander JL, Merrifield CA, et al. 2019; International cancer microbiome consortium consensus statement on the role of the human microbiome in carcinogenesis. Gut. 68:1624–1632. DOI:
10.1136/gutjnl-2019-318556. PMID:
31092590. PMCID:
PMC6709773.
Article
6. Feng Q, Liang S, Jia H, et al. 2015; Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun. 6:6528. DOI:
10.1038/ncomms7528. PMID:
25758642.
Article
7. Yu J, Feng Q, Wong SH, et al. 2017; Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 66:70–78. DOI:
10.1136/gutjnl-2015-309800. PMID:
26408641.
Article
10. Wong SH, Zhao L, Zhang X, et al. 2017; Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology. 153:1621–1633.e6. DOI:
10.1053/j.gastro.2017.08.022. PMID:
28823860.
Article
11. Lee CH, Koh SJ, Radi ZA, Habtezion A. 2023; Animal models of inflammatory bowel disease: novel experiments for revealing pathogenesis of colitis, fibrosis, and colitis-associated colon cancer. Intest Res. 21:295–305. DOI:
10.5217/ir.2023.00029. PMID:
37248173. PMCID:
PMC10397556.
Article
13. Fung TC, Artis D, Sonnenberg GF. 2014; Anatomical localization of commensal bacteria in immune cell homeostasis and disease. Immunol Rev. 260:35–49. DOI:
10.1111/imr.12186. PMID:
24942680. PMCID:
PMC4216679.
Article
15. Mima K, Cao Y, Chan AT, et al. 2016; Fusobacterium nucleatum in colorectal carcinoma tissue according to tumor location. Clin Transl Gastroenterol. 7:e200. DOI:
10.1038/ctg.2016.53. PMID:
27811909. PMCID:
PMC5543402.
Article
16. Yang Y, Weng W, Peng J, et al. 2017; Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of MicroRNA-21. Gastroenterology. 152:851–866.e24. DOI:
10.1053/j.gastro.2016.11.018. PMID:
27876571. PMCID:
PMC5555435.
Article
17. Kostic AD, Chun E, Robertson L, et al. 2013; Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 14:207–215. DOI:
10.1016/j.chom.2013.07.007. PMID:
23954159. PMCID:
PMC3772512.
Article
18. Chung L, Orberg ET, Geis AL, et al. 2018; Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe. 23:421. DOI:
10.1016/j.chom.2018.02.004. PMID:
29544099. PMCID:
PMC6469393.
Article
19. Périchon B, Lichtl-Häfele J, Bergsten E, et al. 2022; Detection of streptococcus gallolyticus and four other crc-associated bacteria in patient stools reveals a potential "driver" role for enterotoxigenic bacteroides fragilis. Front Cell Infect Microbiol. 12:794391. DOI:
10.3389/fcimb.2022.794391. PMID:
35360109. PMCID:
PMC8963412.
Article
20. Wu S, Rhee KJ, Albesiano E, et al. 2009; A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 15:1016–1022. DOI:
10.1038/nm.2015. PMID:
19701202. PMCID:
PMC3034219.
Article
21. Puppa MJ, White JP, Sato S, Cairns M, Baynes JW, Carson JA. 2011; Gut barrier dysfunction in the Apc(Min/+) mouse model of colon cancer cachexia. Biochim Biophys Acta. 1812:1601–1606. DOI:
10.1016/j.bbadis.2011.08.010. PMID:
21914473. PMCID:
PMC3205242.
Article
25. Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, et al. 2020; Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature. 580:269–273. DOI:
10.1038/s41586-020-2080-8. PMID:
32106218. PMCID:
PMC8142898.
26. Arthur JC, Gharaibeh RZ, Mühlbauer M, et al. 2014; Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat Commun. 5:4724. DOI:
10.1038/ncomms5724. PMID:
25182170. PMCID:
PMC4155410.
Article
27. Yang Y, Gharaibeh RZ, Newsome RC, Jobin C. 2020; Amending microbiota by targeting intestinal inflammation with TNF blockade attenuates development of colorectal cancer. Nat Cancer. 1:723–734. DOI:
10.1038/s43018-020-0078-7. PMID:
33768208. PMCID:
PMC7990316.
Article
28. Wong SH, Kwong TNY, Chow TC, et al. 2017; Quantitation of faecal Fusobacterium improves faecal immunochemical test in detecting advanced colorectal neoplasia. Gut. 66:1441–1448. DOI:
10.1136/gutjnl-2016-312766. PMID:
27797940. PMCID:
PMC5530471.
Article
30. Komiya Y, Shimomura Y, Higurashi T, et al. 2019; Patients with colorectal cancer have identical strains of Fusobacterium nucleatum in their colorectal cancer and oral cavity. Gut. 68:1335–1337. DOI:
10.1136/gutjnl-2018-316661. PMID:
29934439. PMCID:
PMC6582823.
Article
31. Yachida S, Mizutani S, Shiroma H, et al. 2019; Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med. 25:968–976. DOI:
10.1038/s41591-019-0458-7. PMID:
31171880.
Article
32. Bosch S, Acharjee A, Quraishi MN, et al. 2022; Integration of stool microbiota, proteome and amino acid profiles to discriminate patients with adenomas and colorectal cancer. Gut Microbes. 14:2139979. DOI:
10.1080/19490976.2022.2139979. PMID:
36369736. PMCID:
PMC9662191.
Article
35. Zorron Cheng Tao Pu L, Yamamoto K, Honda T, et al. 2020; Microbiota profile is different for early and invasive colorectal cancer and is consistent throughout the colon. J Gastroenterol Hepatol. 35:433–437. DOI:
10.1111/jgh.14868. PMID:
31609493.
Article
38. Machover D, Diaz-Rubio E, de Gramont A, et al. 1996; Two consecutive phase II studies of oxaliplatin (L-OHP) for treatment of patients with advanced colorectal carcinoma who were resistant to previous treatment with fluoropyrimidines. Ann Oncol. 7:95–98. DOI:
10.1093/oxfordjournals.annonc.a010489. PMID:
9081400.
Article
39. Wiseman LR, Adkins JC, Plosker GL, Goa KL. 1999; Oxaliplatin: a review of its use in the management of metastatic colorectal cancer. Drugs Aging. 14:459–475. DOI:
10.2165/00002512-199914060-00006. PMID:
10408744.
40. Hou XY, Zhang P, Du HZ, et al. 2021; Prevotella contributes to individual response of FOLFOX in colon cancer. Clin Transl Med. 11:e512. DOI:
10.1002/ctm2.512.
Article
41. Baldwin C, Millette M, Oth D, Ruiz MT, Luquet FM, Lacroix M. 2010; Probiotic Lactobacillus acidophilus and L. casei mix sensitize colorectal tumoral cells to 5-fluorouracil-induced apoptosis. Nutr Cancer. 62:371–378. DOI:
10.1080/01635580903407197. PMID:
20358475.
43. Dong X, Pan P, Zheng DW, Bao P, Zeng X, Zhang XZ. 2020; Bioinorganic hybrid bacteriophage for modulation of intestinal microbiota to remodel tumor-immune microenvironment against colorectal cancer. Sci Adv. 6:eaba1590. DOI:
10.1126/sciadv.aba1590. PMID:
32440552. PMCID:
PMC7228756.
Article
44. Baruch EN, Youngster I, Ben-Betzalel G, et al. 2021; Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 371:602–609. DOI:
10.1126/science.abb5920. PMID:
33303685.
Article
48. Zhao R, Coker OO, Wu J, et al. 2020; Aspirin reduces colorectal tumor development in mice and gut microbes reduce its bioavailability and chemopreventive effects. Gastroenterology. 159:969–983.e4. DOI:
10.1053/j.gastro.2020.05.004. PMID:
32387495.
Article
50. Kvakova M, Kamlarova A, Stofilova J, Benetinova V, Bertkova I. 2022; Probiotics and postbiotics in colorectal cancer: Prevention and complementary therapy. World J Gastroenterol. 28:3370–3382. DOI:
10.3748/wjg.v28.i27.3370. PMID:
36158273. PMCID:
PMC9346452.
Article
51. Dai Z, Coker OO, Nakatsu G, et al. 2018; Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome. 6:70. DOI:
10.1186/s40168-018-0451-2. PMID:
29642940. PMCID:
PMC5896039.
Article
52. Del Carmen S, de Moreno de LeBlanc A, Levit R, et al. 2017; Anti-cancer effect of lactic acid bacteria expressing antioxidant enzymes or IL-10 in a colorectal cancer mouse model. Int Immunopharmacol. 42:122–129. DOI:
10.1016/j.intimp.2016.11.017. PMID:
27912148.
Article
53. Sugimura N, Li Q, Chu ESH, et al. 2021; Lactobacillus gallinarum modulates the gut microbiota and produces anti-cancer metabolites to protect against colorectal tumourigenesis. Gut. 71:2011–2021. DOI:
10.1136/gutjnl-2020-323951. PMID:
34937766. PMCID:
PMC9484392.
Article
54. Li Q, Hu W, Liu WX, et al. 2021; Streptococcus thermophilus inhibits colorectal tumorigenesis through secreting β-galactosidase. Gastroenterology. 160:1179–1193.e14. DOI:
10.1053/j.gastro.2020.09.003. PMID:
32920015.
Article
55. Osterlund P, Ruotsalainen T, Korpela R, et al. 2007; Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study. Br J Cancer. 97:1028–1034. DOI:
10.1038/sj.bjc.6603990. PMID:
17895895. PMCID:
PMC2360429.
Article
57. Kim SH, Lim YJ. 2022; The role of microbiome in colorectal carcinogenesis and its clinical potential as a target for cancer treatment. Intest Res. 20:31–42. DOI:
10.5217/ir.2021.00034. PMID:
34015206. PMCID:
PMC8831768.
Article