J Korean Diabetes.  2022 Mar;23(1):7-11. 10.4093/jkd.2022.23.1.7.

Microbiome and Diabetes

Affiliations
  • 1Department of Endocrinology and Metabolism, Chosun University Hospital, School of Medicine, Chosun University, Gwangju, Korea

Abstract

The prevalence of metabolic diseases such as obesity, type 2 diabetes, and insulin resistance continues to rise. These conditions are associated with multiple social, genetic, and environmental risk factors, including the human gut microbiota, which has emerged as a critical mediator linked to metabolic disease. Recent evidence suggests that the gut microbiota has personalized effects on the gut–brain axis, which controls metabolic function. Gut microbiota can be a great source of prognostic biomarkers and therapies for metabolic diseases. The microbiome also influences immune system development and homeostasis. In this review, I summarize recent findings regarding the association between the gut microbiome and type 2 diabetes. These findings will inform future diabetes mellitus prevention, diagnosis, and treatment strategies.

Keyword

Diabetes mellitus; type 2; Microbiome; Microbiota

Reference

1.Korean Diabetes Association. Diabetes fact sheet in Korea 2020. Seoul: Korean Diabetes Association;2020.
2.Beckman JA., Creager MA., Libby P. Diabetes and athero-sclerosis: epidemiology, pathophysiology, and manage-ment. JAMA. 2002. 287:2570–81.
3.International Diabetes Federation. IDF Diabetes atlas. 6th ed.Brussels: International Diabetes Federation;2013.
4.Ruiz D., Becerra M., Jagai JS., Ard K., Sargis RM. Dispari-ties in environmental exposures to endocrine-disrupting chemicals and diabetes risk in vulnerable populations. Diabetes Care. 2018. 41:193–205.
Article
5.Brunkwall L., Orho-Melander M. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia. 2017. 60:943–51.
Article
6.Zhang S., Cai Y., Meng C., Ding X., Huang J., Luo X, et al. The role of the microbiome in diabetes mellitus. Diabetes Res Clin Pract. 2021. 172:108645.
Article
7.Bielka W., Przezak A., Pawlik A. The role of the gut microbiota in the pathogenesis of diabetes. Int J Mol Sci. 2022. 23:480.
Article
8.Vallianou N., Stratigou T., Christodoulatos GS., Dalamaga M. Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: current evidence and perspectives. Curr Obes Rep. 2019. 8:317–32.
Article
9.Yu ZK., Xie RL., You R., Liu YP., Chen XY., Chen MY, et al. The role of the bacterial microbiome in the treatment of cancer. BMC Cancer. 2021. 21:934.
Article
10.Zaky A., Glastras SJ., Wong MYW., Pollock CA., Saad S. The role of the gut microbiome in diabetes and obesity-related kidney disease. Int J Mol Sci. 2021. 22:9641.
Article
11.Zaiss MM., Joyce Wu HJ., Mauro D., Schett G., Ciccia F. The gut-joint axis in rheumatoid arthritis. Nat Rev Rheu-matol. 2021. 17:224–37.
Article
12.Yang G., Wei J., Liu P., Zhang Q., Tian Y., Hou G, et al. Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism. 2021. 117:154712.
Article
13.Larsen N., Vogensen FK., van den Berg FW., Nielsen DS., Andreasen AS., Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010. 5:e9085.
Article
14.Qin J., Li Y., Cai Z., Li S., Zhu J., Zhang F, et al. A metage-nome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012. 490:55–60.
Article
15.Everard A., Belzer C., Geurts L., Ouwerkerk JP., Druart C., Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. 2013. 110:9066–71.
16.Sanna S., van Zuydam NR., Mahajan A., Kurilshikov A., Vich Vila A., Võsa U, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019. 51:600–5.
Article
17.Pedersen HK., Gudmundsdottir V., Nielsen HB., Hyotyl-ainen T., Nielsen T., Jensen BA, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016. 535:376–81.
Article
18.Shi H., Kokoeva MV., Inouye K., Tzameli I., Yin H., Flier JS. TLR4 links innate immunity and fatty acid-induced insu-lin resistance. J Clin Invest. 2006. 116:3015–25.
Article
19.Zuany-Amorim C., Hastewell J., Walker C. Toll-like recep-tors as potential therapeutic targets for multiple diseases. Nat Rev Drug Discov. 2002. 1:797–807.
Article
20.Gomes JMG., Costa JA., Alfenas RCG. Metabolic endotox-emia and diabetes mellitus: a systematic review. Metabolism. 2017. 68:133–44.
Article
21.Mishra SP., Jain S., Taraphder S., Yadav H. New horizons in microbiota and metabolic health research. J Clin Endocri-nol Metab. 2021. 106:e1052–9.
Article
22.Wu H., Esteve E., Tremaroli V., Khan MT., Caesar R., Man-nerås-Holm L, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, con-tributing to the therapeutic effects of the drug. Nat Med. 2017. 23:850–8.
Article
23.Ahmadi S., Razazan A., Nagpal R., Jain S., Wang B., Mishra SP, et al. Metformin reduces aging-related leaky gut and improves cognitive function by beneficially modulating gut microbiome/goblet cell/mucin axis. J Gerontol A Biol Sci Med Sci. 2020. 75:e9–21.
Article
Full Text Links
  • JKD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr