J Korean Assoc Oral Maxillofac Surg.  2024 Aug;50(4):177-188. 10.5125/jkaoms.2024.50.4.177.

The role of endoplasmic reticulum stress in the pathogenesis of oral diseases

Affiliations
  • 1Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea

Abstract

The endoplasmic reticulum (ER) is crucial for protein synthesis, transport, and folding, as well as calcium storage, lipid and steroid synthesis, and carbohydrate metabolism. Endoplasmic reticulum stress (ERS) occurs when misfolded or unfolded proteins accumulate in the ER lumen due to increased protein secretion or impaired folding. While the role of ERS in disease pathogenesis has been widely studied, most research has focused on extraoral diseases, leaving the role of ERS in intraoral diseases unclear. This review examines the role of ERS in oral diseases and oral fibrosis pathogenesis. A systematic search of literature through July 2023 was conducted in the MEDLINE database (via PubMed) using specific terms related to ERS, oral diseases, and fibrosis. The findings were summarized in both table and narrative form. Emerging evidence indicates that ERS significantly contributes to the pathogenesis of oral diseases and fibrosis. ERS-induced dysregulation of protein folding and the unfolded protein response can lead to cellular dysfunction and inflammation in oral tissues. Understanding the relationship between ERS and oral disease pathogenesis could offer new therapeutic targets for managing oral health and fibrosis-related complications.

Keyword

Endoplasmic reticulum stress; Fibrosis; Oral pathology; Pathogenesis-related proteins; Unfolded protein response

Figure

  • Fig. 1 Identification of relevant literature.


Reference

References

1. Schwarz DS, Blower MD. 2016; The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci. 73:79–94. https://doi.org/10.1007/s00018-015-2052-6. DOI: 10.1007/s00018-015-2052-6. PMID: 26433683. PMCID: PMC4700099.
Article
2. Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, et al. 2019; Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J. 286:241–78. https://doi.org/10.1111/febs.14608. DOI: 10.1111/febs.14608. PMID: 30027602. PMCID: PMC7379631.
Article
3. Hetz C, Zhang K, Kaufman RJ. 2020; Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 21:421–38. https://doi.org/10.1038/s41580-020-0250-z. DOI: 10.1038/s41580-020-0250-z. PMID: 32457508. PMCID: PMC8867924.
Article
4. Marciniak SJ. 2019; Endoplasmic reticulum stress: a key player in human disease. FEBS J. 286:228–31. https://doi.org/10.1111/febs.14740. DOI: 10.1111/febs.14740. PMID: 30677245.
Article
5. Kropski JA, Blackwell TS. 2018; Endoplasmic reticulum stress in the pathogenesis of fibrotic disease. J Clin Invest. 128:64–73. https://doi.org/10.1172/JCI93560. DOI: 10.1172/JCI93560. PMID: 29293089. PMCID: PMC5749533.
Article
6. Arksey H, O'Malley L. 2005; Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 8:19–32. https://doi.org/10.1080/1364557032000119616. DOI: 10.1080/1364557032000119616.
Article
7. Kim DS, Kim JH, Lee GH, Kim HT, Lim JM, Chae SW, et al. 2010; p38 Mitogen-activated protein kinase is involved in endoplasmic reticulum stress-induced cell death and autophagy in human gingival fibroblasts. Biol Pharm Bull. 33:545–9. https://doi.org/10.1248/bpb.33.545. DOI: 10.1248/bpb.33.545. PMID: 20410583.
8. Kim DS, Li B, Rhew KY, Oh HW, Lim HD, Lee W, et al. 2012; The regulatory mechanism of 4-phenylbutyric acid against ER stress-induced autophagy in human gingival fibroblasts. Arch Pharm Res. 35:1269–78. https://doi.org/10.1007/s12272-012-0718-2. DOI: 10.1007/s12272-012-0718-2. PMID: 22864750.
Article
9. Domon H, Takahashi N, Honda T, Nakajima T, Tabeta K, Abiko Y, et al. 2009; Up-regulation of the endoplasmic reticulum stress-response in periodontal disease. Clin Chim Acta. 401:134–40. https://doi.org/10.1016/j.cca.2008.12.007. DOI: 10.1016/j.cca.2008.12.007. PMID: 19109937.
10. Yamada H, Nakajima T, Domon H, Honda T, Yamazaki K. 2015; Endoplasmic reticulum stress response and bone loss in experimental periodontitis in mice. J Periodontal Res. 50:500–8. https://doi.org/10.1111/jre.12232. DOI: 10.1111/jre.12232. PMID: 25223277.
11. Hayashi C, Fukuda T, Kawakami K, Toyoda M, Nakao Y, Watanabe Y, et al. 2022; miR-1260b inhibits periodontal bone loss by targeting ATF6β mediated regulation of ER stress. Front Cell Dev Biol. 10:1061216. https://doi.org/10.3389/fcell.2022.1061216. DOI: 10.3389/fcell.2022.1061216. PMID: 36531939. PMCID: PMC9748617.
Article
12. Ranga Rao S, Subbarayan R, Ajitkumar S, Murugan Girija D. 2018; 4PBA strongly attenuates endoplasmic reticulum stress, fibrosis, and mitochondrial apoptosis markers in cyclosporine treated human gingival fibroblasts. J Cell Physiol. 233:60–6. https://doi.org/10.1002/jcp.25836. DOI: 10.1002/jcp.25836. PMID: 28158898.
Article
13. Rao SR, Ajitkumar S, Subbarayan R, Girija DM. 2018; Cyclosporine-A induces endoplasmic reticulum stress in human gingival fibroblasts - an in vitro study. J Oral Biol Craniofac Res. 8:165–7. https://doi.org/10.1016/j.jobcr.2016.11.002. DOI: 10.1016/j.jobcr.2016.11.002. PMID: 30191101. PMCID: PMC6108159.
Article
14. Katsiougiannis S, Tenta R, Skopouli FN. 2015; Endoplasmic reticulum stress causes autophagy and apoptosis leading to cellular redistribution of the autoantigens Ro/Sjögren's syndrome-related antigen A (SSA) and La/SSB in salivary gland epithelial cells. Clin Exp Immunol. 181:244–52. https://doi.org/10.1111/cei.12638. DOI: 10.1111/cei.12638. PMID: 25845745. PMCID: PMC4516440.
Article
15. Kaira K, Toyoda M, Shimizu A, Shino M, Sakakura K, Takayasu Y, et al. 2016; Expression of ER stress markers (GRP78/BiP and PERK) in adenoid cystic carcinoma. Acta Otolaryngol. 136:1–7. https://doi.org/10.3109/00016489.2015.1083120. DOI: 10.3109/00016489.2015.1083120. PMID: 26366837.
Article
16. Giampietri C, Petrungaro S, Conti S, Facchiano A, Filippini A, Ziparo E. 2015; Cancer microenvironment and endoplasmic reticulum stress response. Mediators Inflamm. 2015:417281. https://doi.org/10.1155/2015/417281. DOI: 10.1155/2015/417281. PMID: 26491226. PMCID: PMC4600498.
Article
17. Yakin M, Seo B, Rich A. 2019; Tunicamycin-induced endoplasmic reticulum stress up-regulates tumour-promoting cytokines in oral squamous cell carcinoma. Cytokine. 120:130–43. https://doi.org/10.1016/j.cyto.2019.04.013. DOI: 10.1016/j.cyto.2019.04.013. PMID: 31071674.
Article
18. Seo B, Coates DE, Lewis J, Seymour GJ, Rich AM. 2022; Unfolded protein response is involved in the metabolic and apoptotic regulation of oral squamous cell carcinoma. Pathology. 54:874–81. https://doi.org/10.1016/j.pathol.2022.04.003. DOI: 10.1016/j.pathol.2022.04.003. PMID: 35791990.
Article
19. Ohata Y, Tsuchiya M, Hirai H, Yamaguchi S, Akashi T, Sakamoto K, et al. 2018; Leukemia inhibitory factor produced by fibroblasts within tumor stroma participates in invasion of oral squamous cell carcinoma. PLoS One. 13:e0191865. https://doi.org/10.1371/journal.pone.0191865. DOI: 10.1371/journal.pone.0191865. PMID: 29444110. PMCID: PMC5812599.
20. Ping Q, Yan R, Cheng X, Wang W, Zhong Y, Hou Z, et al. 2021; Cancer-associated fibroblasts: overview, progress, challenges, and directions. Cancer Gene Ther. 28:984–99. https://doi.org/10.1038/s41417-021-00318-4. DOI: 10.1038/s41417-021-00318-4. PMID: 33712707.
Article
21. Bu L, Baba H, Yoshida N, Miyake K, Yasuda T, Uchihara T, et al. 2019; Biological heterogeneity and versatility of cancer-associated fibroblasts in the tumor microenvironment. Oncogene. 38:4887–901. https://doi.org/10.1038/s41388-019-0765-y. DOI: 10.1038/s41388-019-0765-y. PMID: 30816343.
Article
22. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. 2020; A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 20:174–86. https://doi.org/10.1038/s41568-019-0238-1. DOI: 10.1038/s41568-019-0238-1. PMID: 31980749. PMCID: PMC7046529.
Article
23. Yang D, Liu J, Qian H, Zhuang Q. 2023; Cancer-associated fibroblasts: from basic science to anticancer therapy. Exp Mol Med. 55:1322–32. https://doi.org/10.1038/s12276-023-01013-0. DOI: 10.1038/s12276-023-01013-0. PMID: 37394578. PMCID: PMC10394065.
Article
24. Joshi R, Tawfik A, Edeh N, McCloud V, Looney S, Lewis J, et al. 2010; Dentin sialophosphoprotein (DSPP) gene-silencing inhibits key tumorigenic activities in human oral cancer cell line, OSC2. PLoS One. 5:e13974. https://doi.org/10.1371/journal.pone.0013974. DOI: 10.1371/journal.pone.0013974. PMID: 21103065. PMCID: PMC2980487.
Article
25. Gkouveris I, Nikitakis NG, Aseervatham J, Ogbureke KUE. 2018; The tumorigenic role of DSPP and its potential regulation of the unfolded protein response and ER stress in oral cancer cells. Int J Oncol. 53:1743–51. https://doi.org/10.3892/ijo.2018.4484. DOI: 10.3892/ijo.2018.4484. PMCID: PMC6203152.
Article
26. Nikoloudaki G, Creber K, Hamilton DW. 2020; Wound healing and fibrosis: a contrasting role for periostin in skin and the oral mucosa. Am J Physiol Cell Physiol. 318:C1065–77. https://doi.org/10.1152/ajpcell.00035.2020. DOI: 10.1152/ajpcell.00035.2020. PMID: 32267719. PMCID: PMC7311745.
Article
27. Squier CA, Kremer MJ. 2001; Biology of oral mucosa and esophagus. J Natl Cancer Inst Monogr. 2001:7–15. https://doi.org/10.1093/oxfordjournals.jncimonographs.a003443. DOI: 10.1093/oxfordjournals.jncimonographs.a003443. PMID: 11694559.
Article
28. Groeger SE, Meyle J. 2015; Epithelial barrier and oral bacterial infection. Periodontol 2000. 69:46–67. https://doi.org/10.1111/prd.12094. DOI: 10.1111/prd.12094. PMID: 26252401.
29. Groeger S, Meyle J. 2019; Oral mucosal epithelial cells. Front Immunol. 10:208. https://doi.org/10.3389/fimmu.2019.00208. DOI: 10.3389/fimmu.2019.00208. PMID: 30837987. PMCID: PMC6383680.
Article
30. Kabakov L, Nemcovsky CE, Plasmanik-Chor M, Meir H, Bar DZ, Weinberg E. 2021; Fibroblasts from the oral masticatory and lining mucosa have different gene expression profiles and proliferation rates. J Clin Periodontol. 48:1393–401. https://doi.org/10.1111/jcpe.13532. DOI: 10.1111/jcpe.13532. PMID: 34409631.
Article
31. Kashima TG, Nishiyama T, Shimazu K, Shimazaki M, Kii I, Grigoriadis AE, et al. 2009; Periostin, a novel marker of intramembranous ossification, is expressed in fibrous dysplasia and in c-Fos-overexpressing bone lesions. Hum Pathol. 40:226–37. https://doi.org/10.1016/j.humpath.2008.07.008. DOI: 10.1016/j.humpath.2008.07.008. PMID: 18799196.
Article
32. Chau E, Daley T, Darling MR, Hamilton D. 2013; The expression and immunohistochemical localization of periostin in odontogenic tumors of mixed epithelial/mesenchymal origin. Oral Surg Oral Med Oral Pathol Oral Radiol. 116:214–20. https://doi.org/10.1016/j.oooo.2013.05.008. DOI: 10.1016/j.oooo.2013.05.008. PMID: 23849375.
Article
33. Siriwardena BS, Kudo Y, Ogawa I, Kitagawa M, Kitajima S, Hatano H, et al. 2006; Periostin is frequently overexpressed and enhances invasion and angiogenesis in oral cancer. Br J Cancer. 95:1396–403. https://doi.org/10.1038/sj.bjc.6603431. DOI: 10.1038/sj.bjc.6603431. PMID: 17060937. PMCID: PMC2360586.
Article
34. Wiseman RL, Mesgarzadeh JS, Hendershot LM. 2022; Reshaping endoplasmic reticulum quality control through the unfolded protein response. Mol Cell. 82:1477–91. https://doi.org/10.1016/j.molcel.2022.03.025. DOI: 10.1016/j.molcel.2022.03.025. PMID: 35452616. PMCID: PMC9038009.
Article
35. So JS. 2018; Roles of endoplasmic reticulum stress in immune responses. Mol Cells. 41:705–16. https://doi.org/10.14348/molcells.2018.0241.
36. Park K, Lee SE, Shin KO, Uchida Y. 2019; Insights into the role of endoplasmic reticulum stress in skin function and associated diseases. FEBS J. 286:413–25. https://doi.org/10.1111/febs.14739. DOI: 10.1111/febs.14739. PMID: 30586218. PMCID: PMC6362265.
Article
37. Heindryckx F, Binet F, Ponticos M, Rombouts K, Lau J, Kreuger J, et al. 2016; Endoplasmic reticulum stress enhances fibrosis through IRE1α-mediated degradation of miR-150 and XBP-1 splicing. EMBO Mol Med. 8:729–44. https://doi.org/10.15252/emmm.201505925. DOI: 10.15252/emmm.201505925. PMID: 27226027. PMCID: PMC4931288.
38. Kranz P, Neumann F, Wolf A, Classen F, Pompsch M, Ocklenburg T, et al. 2017; PDI is an essential redox-sensitive activator of PERK during the unfolded protein response (UPR). Cell Death Dis. 8:e2986. https://doi.org/10.1038/cddis.2017.369. DOI: 10.1038/cddis.2017.369. PMID: 28796255. PMCID: PMC5596557.
Article
39. Eletto D, Eletto D, Dersh D, Gidalevitz T, Argon Y. 2014; Protein disulfide isomerase A6 controls the decay of IRE1α signaling via disulfide-dependent association. Mol Cell. 53:562–76. https://doi.org/10.1016/j.molcel.2014.01.004. DOI: 10.1016/j.molcel.2014.01.004. PMID: 24508390. PMCID: PMC3977204.
Article
40. Higa A, Taouji S, Lhomond S, Jensen D, Fernandez-Zapico ME, Simpson JC, et al. 2014; Endoplasmic reticulum stress-activated transcription factor ATF6α requires the disulfide isomerase PDIA5 to modulate chemoresistance. Mol Cell Biol. 34:1839–49. https://doi.org/10.1128/MCB.01484-13. DOI: 10.1128/MCB.01484-13. PMID: 24636989. PMCID: PMC4019026.
Article
41. Oeckinghaus A, Ghosh S. 2009; The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 1:a000034. https://doi.org/10.1101/cshperspect.a000034. DOI: 10.1101/cshperspect.a000034. PMID: 20066092. PMCID: PMC2773619.
Article
42. Schröder M. 2008; Endoplasmic reticulum stress responses. Cell Mol Life Sci. 65:862–94. https://doi.org/10.1007/s00018-007-7383-5. DOI: 10.1007/s00018-007-7383-5. PMID: 18038217. PMCID: PMC11131897.
Article
43. Kelley N, Jeltema D, Duan Y, He Y. 2019; The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 20:3328. https://doi.org/10.3390/ijms20133328. DOI: 10.3390/ijms20133328. PMID: 31284572. PMCID: PMC6651423.
Article
44. Papaliagkas V, Anogianaki A, Anogianakis G, Ilonidis G. 2007; The proteins and the mechanisms of apoptosis: a mini-review of the fundamentals. Hippokratia. 11:108–13.
45. Kim H, Tu HC, Ren D, Takeuchi O, Jeffers JR, Zambetti GP, et al. 2009; Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell. 36:487–99. https://doi.org/10.1016/j.molcel.2009.09.030. DOI: 10.1016/j.molcel.2009.09.030. PMID: 19917256. PMCID: PMC3163439.
Article
46. Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G. 2006; Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 13:1423–33. https://doi.org/10.1038/sj.cdd.4401950. DOI: 10.1038/sj.cdd.4401950. PMID: 16676004.
Article
47. Elmore S. 2007; Apoptosis: a review of programmed cell death. Toxicol Pathol. 35:495–516. https://doi.org/10.1080/01926230701320337. DOI: 10.1080/01926230701320337. PMID: 17562483. PMCID: PMC2117903.
48. Wegner KW, Saleh D, Degterev A. 2017; Complex pathologic roles of RIPK1 and RIPK3: moving beyond necroptosis. Trends Pharmacol Sci. 38:202–25. https://doi.org/10.1016/j.tips.2016.12.005. DOI: 10.1016/j.tips.2016.12.005. PMID: 28126382. PMCID: PMC5325808.
Article
49. Seo J, Nam YW, Kim S, Oh DB, Song J. 2021; Necroptosis molecular mechanisms: recent findings regarding novel necroptosis regulators. Exp Mol Med. 53:1007–17. https://doi.org/10.1038/s12276-021-00634-7. DOI: 10.1038/s12276-021-00634-7. PMID: 34075202. PMCID: PMC8166896.
Article
50. Saveljeva S, Mc Laughlin SL, Vandenabeele P, Samali A, Bertrand MJ. 2015; Endoplasmic reticulum stress induces ligand-independent TNFR1-mediated necroptosis in L929 cells. Cell Death Dis. 6:e1587. https://doi.org/10.1038/cddis.2014.548. DOI: 10.1038/cddis.2014.548. PMID: 25569104. PMCID: PMC4669746.
Article
51. Bernales S, McDonald KL, Walter P. 2006; Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 4:e423. https://doi.org/10.1371/journal.pbio.0040423. DOI: 10.1371/journal.pbio.0040423. PMID: 17132049. PMCID: PMC1661684.
52. Sano R, Reed JC. 2013; ER stress-induced cell death mechanisms. Biochim Biophys Acta. 1833:3460–70. https://doi.org/10.1016/j.bbamcr.2013.06.028. DOI: 10.1016/j.bbamcr.2013.06.028. PMID: 23850759. PMCID: PMC3834229.
Article
53. Binet F, Sapieha P. 2015; ER Stress and angiogenesis. Cell Metab. 22:560–75. https://doi.org/10.1016/j.cmet.2015.07.010. DOI: 10.1016/j.cmet.2015.07.010. PMID: 26278049.
Article
54. Ghosh R, Lipson KL, Sargent KE, Mercurio AM, Hunt JS, Ron D, et al. 2010; Transcriptional regulation of VEGF-A by the unfolded protein response pathway. PLoS One. 5:e9575. https://doi.org/10.1371/journal.pone.0009575. DOI: 10.1371/journal.pone.0009575. PMID: 20221394. PMCID: PMC2833197.
Article
55. Gargalovic PS, Imura M, Zhang B, Gharavi NM, Clark MJ, Pagnon J, et al. 2006; Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proc Natl Acad Sci U S A. 103:12741–6. https://doi.org/10.1073/pnas.0605457103. DOI: 10.1073/pnas.0605457103. PMID: 16912112. PMCID: PMC1568918.
Article
56. Li A, Dubey S, Varney ML, Dave BJ, Singh RK. 2003; IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol. 170:3369–76. https://doi.org/10.4049/jimmunol.170.6.3369. DOI: 10.4049/jimmunol.170.6.3369. PMID: 12626597.
57. Pereira ER, Liao N, Neale GA, Hendershot LM. 2010; Transcriptional and post-transcriptional regulation of proangiogenic factors by the unfolded protein response. PLoS One. 5:e12521. https://doi.org/10.1371/journal.pone.0012521. DOI: 10.1371/journal.pone.0012521. PMID: 20824063. PMCID: PMC2932741.
Article
58. Ribatti D, Tamma R, Annese T. 2020; Epithelial-mesenchymal transition in cancer: a historical overview. Transl Oncol. 13:100773. https://doi.org/10.1016/j.tranon.2020.100773. DOI: 10.1016/j.tranon.2020.100773. PMID: 32334405. PMCID: PMC7182759.
Article
59. Feng YX, Sokol ES, Del Vecchio CA, Sanduja S, Claessen JH, Proia TA, et al. 2014; Epithelial-to-mesenchymal transition activates PERK-eIF2α and sensitizes cells to endoplasmic reticulum stress. Cancer Discov. 4:702–15. https://doi.org/10.1158/2159-8290.CD-13-0945. DOI: 10.1158/2159-8290.CD-13-0945. PMID: 24705811.
Article
60. Moon SY, Kim HS, Nho KW, Jang YJ, Lee SK. 2014; Endoplasmic reticulum stress induces epithelial-mesenchymal transition through autophagy via activation of c-Src kinase. Nephron Exp Nephrol. 126:127–40. https://doi.org/10.1159/000362457. DOI: 10.1159/000362457. PMID: 24863135.
Article
61. Chang YJ, Chen WY, Huang CY, Liu HH, Wei PL. 2015; Glucose-regulated protein 78 (GRP78) regulates colon cancer metastasis through EMT biomarkers and the NRF-2/HO-1 pathway. Tumour Biol. 36:1859–69. https://doi.org/10.1007/s13277-014-2788-x. DOI: 10.1007/s13277-014-2788-x. PMID: 25431258.
Full Text Links
  • JKAOMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr