Endocrinol Metab.  2024 Aug;39(4):552-558. 10.3803/EnM.2024.1989.

Parathyroid Gland Generation from Pluripotent Stem Cells

Affiliations
  • 1Department of Metabolism and Endocrinology, St. Marianna University School of Medicine, Kawasaki, Japan

Abstract

Patients with permanent hypoparathyroidism require lifelong treatment. Current replacement therapies sometimes have adverse effects (e.g., hypercalciuria and chronic kidney disease). Generating parathyroid glands (PTGs) from the patient’s own induced pluripotent stem cells (PSCs), with transplantation of these PTGs, would be an effective treatment option. Multiple methods for generating PTGs from PSCs have been reported. One major trend is in vitro differentiation of PSCs into PTGs. Another is in vivo generation of PSC-derived PTGs by injecting PSCs into PTG-deficient embryos. This review discusses current achievements and challenges in present and future PTG regenerative medicine.

Keyword

Parathyroid glands; Pluripotent stem cells; Regenerative medicine

Figure

  • Fig. 1. Schematic diagram of parathyroid gland (PTG) differentiation in vitro. In vitro PTG differentiation recapitulates early mammalian PTG development. Human pluripotent stem cells (PSCs) differentiate into definitive endoderm (DE) under high concentrations of activin A. This process is common to all three methods reviewed herein (upper [10], middle [13], bottom [14]). DE is subsequently induced to become anterior foregut endoderm (AFE). Rostral AFE differentiates into pharyngeal endoderm (PE). Oct4, POU class 5 homeobox 1; Nanog, nanog homeobox; Sox2, SRY-box transcription factor 2; Foxa2, forkhead box A2; Hoxa3, homeobox A3; Tbx1, T-box 1; Pax1, paired box 1; Pth, parathyroid hormone; Gcm2, glial cells missing 2; Casr, Ca-sensing receptor; Nkx2.1, NK2 homeobox 1; BMP4, bone morphogenetic protein 4; bFGF, basic fibroblast growth factor; WNT3a, Wnt family member 3A; KGF, keratinocyte growth factor; FGF10, fibroblast growth factor 10; EGF, epidermal growth factor; SHH, sonic hedgehog; ATRA, all-transretinoic acid.

  • Fig. 2. In vivo generation of mouse embryonic stem cell (mESC)-derived parathyroid glands (PTGs) via blastocyst complementation (BC) [31]. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated zygote glial cells missing 2 (Gcm2) knockout (KO) yielded PTG-deficient embryos. Parathyroid hormone (Pth)-tdTomato knock-in mESCs were injected into Gcm2 KO parathyroid-deficient mouse embryos. The resulting chimeric mice had PTGs derived from the injected cells. Immunostaining of mESC-derived PTGs generated in Gcm2-/- mice. tdTomato (magenta), PTH (green). Scale bars: 100 μm. From [31] Fig. 2M.


Reference

1. Mitchell DM, Regan S, Cooley MR, Lauter KB, Vrla MC, Becker CB, et al. Long-term follow-up of patients with hypoparathyroidism. J Clin Endocrinol Metab. 2012; 97:4507–14.
Article
2. Zorn AM, Wells JM. Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol. 2009; 25:221–51.
Article
3. Graham A. Development of the pharyngeal arches. Am J Med Genet A. 2003; 119A:251–6.
Article
4. Grevellec A, Tucker AS. The pharyngeal pouches and clefts: development, evolution, structure and derivatives. Semin Cell Dev Biol. 2010; 21:325–32.
Article
5. Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet. 2001; 27:286–91.
Article
6. Gunther T, Chen ZF, Kim J, Priemel M, Rueger JM, Amling M, et al. Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature. 2000; 406:199–203.
Article
7. Liu Z, Yu S, Manley NR. Gcm2 is required for the differentiation and survival of parathyroid precursor cells in the parathyroid/thymus primordia. Dev Biol. 2007; 305:333–46.
Article
8. Su D, Ellis S, Napier A, Lee K, Manley NR. Hoxa3 and pax1 regulate epithelial cell death and proliferation during thymus and parathyroid organogenesis. Dev Biol. 2001; 236:316–29.
Article
9. Peters H, Neubuser A, Kratochwil K, Balling R. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev. 1998; 12:2735–47.
10. Green MD, Chen A, Nostro MC, d’Souza SL, Schaniel C, Lemischka IR, et al. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat Biotechnol. 2011; 29:267–72.
Article
11. Moore-Scott BA, Manley NR. Differential expression of Sonic hedgehog along the anterior-posterior axis regulates patterning of pharyngeal pouch endoderm and pharyngeal endoderm-derived organs. Dev Biol. 2005; 278:323–35.
Article
12. Gordon J, Manley NR. Mechanisms of thymus organogenesis and morphogenesis. Development. 2011; 138:3865–78.
Article
13. Lawton BR, Martineau C, Sosa JA, Roman S, Gibson CE, Levine MA, et al. Differentiation of PTH-expressing cells from human pluripotent stem cells. Endocrinology. 2020; 161:bqaa141.
14. Nakatsuka R, Kato T, Zhang R, Uemura Y, Sasaki Y, Matsuoka Y, et al. The induction of parathyroid cell differentiation from human induced pluripotent stem cells promoted via TGF-α/EGFR signaling. Stem Cells Dev. 2023; 32:670–80.
Article
15. D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006; 24:1392–401.
Article
16. Huang SX, Green MD, de Carvalho AT, Mumau M, Chen YW, D’Souza SL, et al. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells. Nat Protoc. 2015; 10:413–25.
Article
17. Patel SR, Gordon J, Mahbub F, Blackburn CC, Manley NR. Bmp4 and Noggin expression during early thymus and parathyroid organogenesis. Gene Expr Patterns. 2006; 6:794–9.
Article
18. Cozzolino M, Lu Y, Sato T, Yang J, Suarez IG, Brancaccio D, et al. A critical role for enhanced TGF-alpha and EGFR expression in the initiation of parathyroid hyperplasia in experimental kidney disease. Am J Physiol Renal Physiol. 2005; 289:F1096–102.
19. Kano M, Mizutani E, Homma S, Masaki H, Nakauchi H. Xenotransplantation and interspecies organogenesis: current status and issues. Front Endocrinol (Lausanne). 2022; 13:963282.
Article
20. Chen J, Lansford R, Stewart V, Young F, Alt FW. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc Natl Acad Sci U S A. 1993; 90:4528–32.
Article
21. Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell. 2010; 142:787–99.
Article
22. Yamaguchi T, Sato H, Kato-Itoh M, Goto T, Hara H, Sanbo M, et al. Interspecies organogenesis generates autologous functional islets. Nature. 2017; 542:191–6.
Article
23. Chang AN, Liang Z, Dai HQ, Chapdelaine-Williams AM, Andrews N, Bronson RT, et al. Neural blastocyst complementation enables mouse forebrain organogenesis. Nature. 2018; 563:126–30.
Article
24. Usui J, Kobayashi T, Yamaguchi T, Knisely AS, Nishinakamura R, Nakauchi H. Generation of kidney from pluripotent stem cells via blastocyst complementation. Am J Pathol. 2012; 180:2417–26.
Article
25. Goto T, Hara H, Sanbo M, Masaki H, Sato H, Yamaguchi T, et al. Generation of pluripotent stem cell-derived mouse kidneys in Sall1-targeted anephric rats. Nat Commun. 2019; 10:451.
Article
26. Kobayashi T, Goto T, Oikawa M, Sanbo M, Yoshida F, Terada R, et al. Blastocyst complementation using Prdm14-deficient rats enables efficient germline transmission and generation of functional mouse spermatids in rats. Nat Commun. 2021; 12:1328.
Article
27. Isotani A, Hatayama H, Kaseda K, Ikawa M, Okabe M. Formation of a thymus from rat ES cells in xenogeneic nude mouse↔rat ES chimeras. Genes Cells. 2011; 16:397–405.
Article
28. Hamanaka S, Umino A, Sato H, Hayama T, Yanagida A, Mizuno N, et al. Generation of vascular endothelial cells and hematopoietic cells by blastocyst complementation. Stem Cell Reports. 2018; 11:988–97.
Article
29. Das S, Koyano-Nakagawa N, Gafni O, Maeng G, Singh BN, Rasmussen T, et al. Generation of human endothelium in pig embryos deficient in ETV2. Nat Biotechnol. 2020; 38:297–302.
Article
30. Mori M, Furuhashi K, Danielsson JA, Hirata Y, Kakiuchi M, Lin CS, et al. Generation of functional lungs via conditional blastocyst complementation using pluripotent stem cells. Nat Med. 2019; 25:1691–8.
Article
31. Kano M, Mizuno N, Sato H, Kimura T, Hirochika R, Iwasaki Y, et al. Functional calcium-responsive parathyroid glands generated using single-step blastocyst complementation. Proc Natl Acad Sci U S A. 2023; 120:e2216564120.
Article
32. Akiyama Y, Hosoya T, Poole AM, Hotta Y. The gcm-motif: a novel DNA-binding motif conserved in Drosophila and mammals. Proc Natl Acad Sci U S A. 1996; 93:14912–6.
33. Masaki H, Kato-Itoh M, Takahashi Y, Umino A, Sato H, Ito K, et al. Inhibition of apoptosis overcomes stage-related compatibility barriers to chimera formation in mouse embryos. Cell Stem Cell. 2016; 19:587–92.
34. Nishimura T, Suchy FP, Bhadury J, Igarashi KJ, Charlesworth CT, Nakauchi H. Generation of functional organs using a cell-competitive niche in intra- and inter-species rodent chimeras. Cell Stem Cell. 2021; 28:141–9.
Article
35. Tan T, Wu J, Si C, Dai S, Zhang Y, Sun N, et al. Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo. Cell. 2021; 184:2020–32.
Article
Full Text Links
  • ENM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr