Int J Stem Cells.  2024 Aug;17(3):270-283. 10.15283/ijsc24060.

Glutathione Dynamics in the Tumor Microenvironment: A Potential Target of Cancer Stem Cells and T Cells

Affiliations
  • 1Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju, Korea

Abstract

Glutathione (GSH), the main cellular antioxidant, dynamically influences tumor growth, metastasis, and resistance to therapy in the tumor microenvironment (TME), which comprises cancer cells, immune cells, stromal cells, and non-cellular components, including the extracellular matrix, metabolites, hypoxia, and acidity. Cancer stem cells (CSCs) and T cells are minor but significant cell subsets of the TME. GSH dynamics influences the fate of CSCs and T cells. Here, we explored GSH dynamics in CSCs and T cells within the TME, as well as therapeutic approaches that could target these dynamics.

Keyword

Glutathione dynamics; Cancer stem cells; T cells; Tumor microenvironment

Figure

  • Fig. 1 Glutathione (GSH) dynamics of cancer stem cells (CSCs) in tumor microenvironment (TME). In the TME, the CSCs dynamically modulate their GSH regeneration capacity for survival. (A) Cytosolic nicotinamide adenine dinucleotide phosphate (NADPH) was mainly supplied via the pentose phosphate pathway (PPP). Under oxidative stress, glyceraldehyde 3-phosphate dehydrogenase is inactivated via the oxidation of cysteine thiol residues at its active site, and glucose 6-phosphate dehydrogenase (G6PD) is activated by ataxia-telangiectasia mutated serine/threonine kinase (ATM), leading to the potentiation of PPP. (B) Cytosolic GSH synthesized from glutamate, cysteine, and glycine can scavenge reactive oxygen species (ROS) via glutathione peroxidase (GPX) and can be regenerated by glutathione reductase (GSR) with NADPH, leading to the generation of a redox buffering cycle. (C) In the mitochondrial matrix, mitochondrial ROS (mtROS) are produced via superoxide dismutase 2 (SOD2) acetylation by GCN5L1 and can be removed by mitochondrial GSH and NADPH pools. (D) Plasma membrane is protected by GPX4 from lipid peroxidation and ferroptosis. GSH and oleic acid present in the lymphatic vessels inhibit CSCs’ ferroptosis. (E) Cytosolic NADPH is produced by isocitrate dehydrogenase 1 (IDH1). (F) Mitochondrial NADPH is supplied by IDH2 which transforms isocitrate to α-ketoglutarate (α-KG) as a reaction of the citric acid cycle. α-KG is also produced by mitochondrial glutaminase (GLS) and the glutamine transamidase reaction. (G, H) Cytosolic NADPH is produced by malic enzyme 1 (ME1, G) and the folate pathway (H). (I) CSCs derived-DKK1 inhibits Wnt signaling and increases SLC7A11 expression, leading to the inhibition of ferroptosis. Cys2: cysteine, DHA: dehydroascorbate, F1,6BP: fructose 1,6-bisphosphate, G3P: glyceraldehyde 3-phosphate, G6P: glucose 6-phosphate, GSSG: glutathione disulfide, OAA: oxaloa-cetate, THF: tetrahydrofolate.

  • Fig. 2 Transcriptional factors (TFs) regulating glutathione (GSH) dynamics in cancer stem cells. TFs and their targeting genes are involved in GSH dynamics. ROS: reactive oxygen species, NADPH: nicotinamide adenine dinucleotide phosphate.

  • Fig. 3 Regulation of cancer stem cells (CSCs) by glutathione (GSH) dynamics during tumorigenesis stages. (A) According to tumorigenesis stages, reactive oxygen species (ROS) differently regulate the expression levels of GSH-related and metastatic genes in CSCs. (B, C) CSCs can be classified into mesenchymal-type cells (M-CSCs) and epithelial-type cells (E-CSCs) differentiated by EMT and MET, respectively. Both processes are critically regulated by redox signaling (B). M-CSCs are dependent on glycolysis and superoxide dismutase acetylation of lysine 68 (SOD2K68Ac)-mediated mitochondrial ROS (mtROS). E-CSCs are dependent on oxidative phosphorylation (OXPHOS) and basal ROS. E-CSCs are more dependent on GSH levels compared to M-CSCs for their survival (C). NOX: NADPH (nicotinamide adenine dinucleotide phosphate) oxidase, TGF-β: transforming growth factor-β, GFs: growth factors, 2DG: 2-deoxyglucose, EMT: epithelial-mesenchymal transition, MET: mesenchymal-epithelial transition.

  • Fig. 4 Mechanistic insights into the network between T cell and stem cells. (A) Background information on how CD4+ T helper subsets are generated. (B) Each type of CD4+ T helper subset plays a distinct role in the fate of intestinal stem cells. Effector cytokines (interferon [IFN]-γ, interleukin [IL]-4, IL-17A) from T helper 1 (Th1), Th2, and Th17 mediated the differentiation of Lgr5+ intestinal stem cells, which leads to the generation of goblet cells, tuft cells, and Paneth cells. On the other hand, IL-10 from Tregs induce self-renewal of intestinal stem cells. (C) IL-17 from Tregs promotes the stemness of colorectal cancer by upregulating CD44, CD133, and EpCAM on cancer stem cells (CSCs). Tregs-derived prostaglandin E2 (PGE2) activates NF-κB, expanding CSCs. In hypoxic conditions, transforming growth factor-β (TGF-β) from Tregs induces vascular endothelial growth factor (VEGF), which enhances angiogenesis to nourish CSCs. (D) CSCs secrete IL-23, IL-6, IL-8, IL-1β, which polarize Th17 differentiation. Then, IL-17 and IL-22 from Th17 help, in part, CSC survival. CSCs induce the differentiation and recruitment of Tregs. TGF-β and IDO 1 from CSCs act on naïve CD4+ T cells to differentiate into Tregs. CCL2 and CCL5 from CSCs recruit Treg in CCR4 and CCR5-dependent manners. Moreover, CSCs not only upregulate immune checkpoint molecules such as PDL1 and CTLA4 but also reduce MHC I expression, which hinders anti-tumor T cell responses.

  • Fig. 5 The network of redox signaling for determining the fate of T cells. (A) Superoxide radicals are generated at various subcellular spaces and undergo enzymatic conversion into H2O2 by superoxide dismutase (SOD). Glutathione (GSH) reduces H2O2 levels by converting it into water. Upon T cell receptor (TCR) stimulation, NOX becomes activated to generate H2O2. H2O2 selectively oxidizes thiol groups on the surface or cytosol of T cells, modulating diverse cellular processes, including DNA synthesis, epigenetic regulation and post-translational modifications. Cysteine from antigen-presenting cells (APCs) is resorbed by T cells and assimilated into an enzymatic process generating GSH. GSH preserves the reduced status of thiol on the surface of the cell, mitigating H2O2 effects. Thioredoxin (TRX) synthesized by T cells, APCs, and Tregs contribute to maintaining the thiol group on the cell surface. (B) Antigen-stimulated T cells express active NOX that generates reactive oxygen species (ROS) in the cytosol. ROS induce conformational changes in Keap1, which leads to Nrf2 translocation into the nucleus. Nrf2 binds to antioxidant response elements (AREs) in the promoter region of glutamate-cysteine ligase catalytic subunit (GCLC) catalyzing GSH synthesis. This figure depicts how NOX, Keap1, and GCLC knock-out affect the function of T cells in various disease conditions. (C) ROS stabilizes SENP3 that drives deSUMOylation of BACH2, which potentiates Tregs expansion through enhancing Foxp3 expression. Moreover, ROS mediates H3K27 acetylation at Foxp3 promoter, which accelerates the transcription of Foxp3 gene. Conversely, mitochondrial ROS accumulation in autoimmune conditions causes DNA damage in Tregs, causing the death of Tregs. NOX: NADPH (nicotinamide adenine dinucleotide phosphate) oxidase.


Reference

References

1. Albini A, Bruno A, Gallo C, Pajardi G, Noonan DM, Dallaglio K. 2015; Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity. Connect Tissue Res. 56:414–425. DOI: 10.3109/03008207.2015.1066780. PMID: 26291921. PMCID: PMC4673538.
2. Demicco M, Liu XZ, Leithner K, Fendt SM. 2024; Metabolic heterogeneity in cancer. Nat Metab. 6:18–38. DOI: 10.1038/s42255-023-00963-z. PMID: 38267631.
3. Lapidot T, Sirard C, Vormoor J, et al. 1994; A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 367:645–648. DOI: 10.1038/367645a0. PMID: 7509044.
4. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. 2003; Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 100:3983–3988. DOI: 10.1073/pnas.0530291100. PMID: 12629218. PMCID: PMC153034.
5. Chi H, Pepper M, Thomas PG. 2024; Principles and therapeutic applications of adaptive immunity. Cell. 187:2052–2078. DOI: 10.1016/j.cell.2024.03.037. PMID: 38670065. PMCID: PMC11177542.
6. Jiang Y, Li Y, Zhu B. 2015; T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 6:e1792. DOI: 10.1038/cddis.2015.162. PMID: 26086965. PMCID: PMC4669840.
7. Tie Y, Tang F, Wei YQ, Wei XW. 2022; Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J Hematol Oncol. 15:61. DOI: 10.1186/s13045-022-01282-8. PMID: 35585567. PMCID: PMC9118588.
8. Li C, Jiang P, Wei S, Xu X, Wang J. 2020; Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer. 19:116. DOI: 10.1186/s12943-020-01234-1. PMID: 32680511. PMCID: PMC7367382.
9. Asadzadeh Z, Mohammadi H, Safarzadeh E, et al. 2017; The paradox of Th17 cell functions in tumor immunity. Cell Immunol. 322:15–25. DOI: 10.1016/j.cellimm.2017.10.015. PMID: 29103586.
10. Bailey SR, Nelson MH, Himes RA, Li Z, Mehrotra S, Paulos CM. 2014; Th17 cells in cancer: the ultimate identity crisis. Front Immunol. 5:276. DOI: 10.3389/fimmu.2014.00276. PMID: 24987392. PMCID: PMC4060300.
11. Lu SC. 2013; Glutathione synthesis. Biochim Biophys Acta. 1830:3143–3153. DOI: 10.1016/j.bbagen.2012.09.008. PMID: 22995213. PMCID: PMC3549305.
12. Jeong EM, Shin JW, Lim J, et al. 2019; Monitoring glutathione dynamics and heterogeneity in living stem cells. Int J Stem Cells. 12:367–379. DOI: 10.15283/ijsc18151. PMID: 30836726. PMCID: PMC6657947.
13. Kim J, Gong YX, Jeong EM. 2023; Measuring glutathione regeneration capacity in stem cells. Int J Stem Cells. 16:356–362. DOI: 10.15283/ijsc23047. PMID: 37385637. PMCID: PMC10465335.
14. Lim J, Heo J, Ju H, et al. 2020; Glutathione dynamics determine the therapeutic efficacy of mesenchymal stem cells for graft-versus-host disease via CREB1-NRF2 pathway. Sci Adv. 6:eaba1334. DOI: 10.1126/sciadv.aba1334. PMID: 32490200. PMCID: PMC7239701.
15. Jeong EM, Yoon JH, Lim J, et al. 2018; Real-time monitoring of glutathione in living cells reveals that high glutathione levels are required to maintain stem cell function. Stem Cell Reports. 10:600–614. DOI: 10.1016/j.stemcr.2017.12.007. PMID: 29307581. PMCID: PMC5830891.
16. Zhu Y, Carvey PM, Ling Z. 2006; Age-related changes in glutathione and glutathione-related enzymes in rat brain. Brain Res. 1090:35–44. DOI: 10.1016/j.brainres.2006.03.063. PMID: 16647047. PMCID: PMC1868496.
17. Li H, Ning S, Ghandi M, et al. 2019; The landscape of cancer cell line metabolism. Nat Med. 25:850–860. DOI: 10.1038/s41591-019-0404-8. PMID: 31068703. PMCID: PMC6629041.
18. Jagust P, Alcalá S, Sainz B Jr, Heeschen C, Sancho P. 2020; Glutathione metabolism is essential for self-renewal and chemoresistance of pancreatic cancer stem cells. World J Stem Cells. 12:1410–1428. DOI: 10.4252/wjsc.v12.i11.1410. PMID: 33312407. PMCID: PMC7705467.
19. Mukha A, Kahya U, Linge A, et al. 2021; GLS-driven glutamine catabolism contributes to prostate cancer radiosensitivity by regulating the redox state, stemness and ATG5-mediated autophagy. Theranostics. 11:7844–7868. DOI: 10.7150/thno.58655. PMID: 34335968. PMCID: PMC8315064.
20. Polewski MD, Reveron-Thornton RF, Cherryholmes GA, Marinov GK, Aboody KS. 2017; SLC7A11 overexpression in glioblastoma is associated with increased cancer stem cell-like properties. Stem Cells Dev. 26:1236–1246. DOI: 10.1089/scd.2017.0123. PMID: 28610554. PMCID: PMC5576215.
21. Xu X, Wang L, Zang Q, et al. 2021; Rewiring of purine metabolism in response to acidosis stress in glioma stem cells. Cell Death Dis. 12:277. DOI: 10.1038/s41419-021-03543-9. PMID: 33723244. PMCID: PMC7961141.
22. Asai R, Tsuchiya H, Amisaki M, et al. 2019; CD44 standard isoform is involved in maintenance of cancer stem cells of a hepatocellular carcinoma cell line. Cancer Med. 8:773–782. DOI: 10.1002/cam4.1968. PMID: 30636370. PMCID: PMC6382709.
23. Wang SQ, Chen JJ, Jiang Y, et al. 2023; Targeting GSTP1 as therapeutic strategy against lung adenocarcinoma stemness and resistance to tyrosine kinase inhibitors. Adv Sci (Weinh). 10:e2205262. DOI: 10.1002/advs.202205262. PMID: 36709476. PMCID: PMC9982593.
24. Amaya ML, Inguva A, Pei S, et al. 2022; The STAT3-MYC axis promotes survival of leukemia stem cells by regulating SLC1A5 and oxidative phosphorylation. Blood. 139:584–596. DOI: 10.1182/blood.2021013201. PMID: 34525179. PMCID: PMC8796651.
25. Hughes CE, Coody TK, Jeong MY, Berg JA, Winge DR, Hughes AL. 2020; Cysteine toxicity drives age-related mitochondrial decline by altering iron homeostasis. Cell. 180:296–310.e18. DOI: 10.1016/j.cell.2019.12.035. PMID: 31978346. PMCID: PMC7164368.
26. Ju HQ, Lu YX, Chen DL, et al. 2016; Redox regulation of stem-like cells though the CD44v-xCT axis in colorectal cancer: mechanisms and therapeutic implications. Theran-ostics. 6:1160–1175. DOI: 10.7150/thno.14848. PMID: 27279909. PMCID: PMC4893643.
27. Ishimoto T, Nagano O, Yae T, et al. 2011; CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell. 19:387–400. DOI: 10.1016/j.ccr.2011.01.038. PMID: 21397861.
28. Ogihara K, Kikuchi E, Okazaki S, et al. 2019; Sulfasalazine could modulate the CD44v9-xCT system and enhance cisplatin-induced cytotoxic effects in metastatic bladder cancer. Cancer Sci. 110:1431–1441. DOI: 10.1111/cas.13960. PMID: 30719824. PMCID: PMC6447829.
29. Bensaad K, Tsuruta A, Selak MA, et al. 2006; TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 126:107–120. DOI: 10.1016/j.cell.2006.05.036. PMID: 16839880.
30. Cheung EC, Ludwig RL, Vousden KH. 2012; Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc Natl Acad Sci U S A. 109:20491–20496. DOI: 10.1073/pnas.1206530109. PMID: 23185017. PMCID: PMC3528527.
31. Maddocks OD, Berkers CR, Mason SM, et al. 2013; Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature. 493:542–546. DOI: 10.1038/nature11743. PMID: 23242140. PMCID: PMC6485472.
32. Hayes JD, Dinkova-Kostova AT, Tew KD. 2020; Oxidative stress in cancer. Cancer Cell. 38:167–197. DOI: 10.1016/j.ccell.2020.06.001. PMID: 32649885. PMCID: PMC7439808.
33. Piskounova E, Agathocleous M, Murphy MM, et al. 2015; Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 527:186–191. DOI: 10.1038/nature15726. PMID: 26466563. PMCID: PMC4644103.
34. He C, Danes JM, Hart PC, et al. 2019; SOD2 acetylation on lysine 68 promotes stem cell reprogramming in breast cancer. Proc Natl Acad Sci U S A. 116:23534–23541. DOI: 10.1073/pnas.1902308116. PMID: 31591207. PMCID: PMC6876149.
35. Yoo HC, Park SJ, Nam M, et al. 2020; A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell Metab. 31:267–283.e12. DOI: 10.1016/j.cmet.2019.11.020. PMID: 31866442.
36. Lu H, Samanta D, Xiang L, et al. 2015; Chemotherapy triggers HIF-1-dependent glutathione synthesis and copper chelation that induces the breast cancer stem cell phenotype. Proc Natl Acad Sci U S A. 112:E4600–E4609. DOI: 10.1073/pnas.1513433112. PMID: 26229077. PMCID: PMC4547233.
37. Debnath J, Mills KR, Collins NL, Reginato MJ, Muthuswa-my SK, Brugge JS. 2002; The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell. 111:29–40. DOI: 10.1016/s0092-8674(02)01001-2. PMID: 12372298.
38. Zhang K, Manninen A. 2019; 3D cell culture models of epithelial tissues. Methods Mol Biol. 1926:77–84. DOI: 10.1007/978-1-4939-9021-4_7. PMID: 30742264.
39. Schafer ZT, Grassian AR, Song L, et al. 2009; Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature. 461:109–113. DOI: 10.1038/nature08268. PMID: 19693011. PMCID: PMC2931797.
40. Wiel C, Le Gal K, Ibrahim MX, et al. 2019; BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell. 178:330–345.e22. DOI: 10.1016/j.cell.2019.06.005. PMID: 31257027.
41. Hawk MA, Schafer ZT. 2018; Mechanisms of redox metabolism and cancer cell survival during extracellular matrix detachment. J Biol Chem. 293:7531–7537. DOI: 10.1074/jbc.tm117.000260. PMID: 29339552. PMCID: PMC5961063.
42. Jiang L, Shestov AA, Swain P, et al. 2016; Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature. 532:255–258. DOI: 10.1038/nature17393. PMID: 27049945. PMCID: PMC4860952.
43. Ubellacker JM, Tasdogan A, Ramesh V, et al. 2020; Lymph protects metastasizing melanoma cells from ferroptosis. Nature. 585:113–118. DOI: 10.1038/s41586-020-2623-z. PMID: 32814895. PMCID: PMC7484468.
44. Wu M, Zhang X, Zhang W, et al. 2022; Cancer stem cell regulated phenotypic plasticity protects metastasized cancer cells from ferroptosis. Nat Commun. 13:1371. DOI: 10.3410/f.741846098.793594846. PMID: 35296660. PMCID: PMC8927306.
45. Nogueira V, Hay N. 2013; Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res. 19:4309–4314. DOI: 10.1158/1078-0432.ccr-12-1424. PMID: 23719265. PMCID: PMC3933310.
46. Luo M, Shang L, Brooks MD, et al. 2018; Targeting breast cancer stem cell state equilibrium through modulation of redox signaling. Cell Metab. 28:69–86.e6. DOI: 10.1016/j.cmet.2018.06.006. PMID: 29972798. PMCID: PMC6037414.
47. Fortmann SP, Burda BU, Senger CA, Lin JS, Whitlock EP. 2013; Vitamin and mineral supplements in the primary prevention of cardiovascular disease and cancer: an updated systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med. 159:824–834. DOI: 10.7326/0003-4819-159-12-201312170-00729. PMID: 24217421.
48. Alpha-Tocopherol. Beta Carotene Cancer Prevention Study Group. 1994; The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med. 330:1029–1035. DOI: 10.1056/nejm199404143301501. PMID: 8127329.
49. Goodman GE, Thornquist MD, Balmes J, et al. 2004; The beta-carotene and retinol efficacy trial: incidence of lung cancer and cardiovascular disease mortality during 6-year follow-up after stopping beta-carotene and retinol supplements. J Natl Cancer Inst. 96:1743–1750. DOI: 10.1093/jnci/djh320. PMID: 15572756.
50. Klein EA, Thompson IM Jr, Tangen CM, et al. 2011; Vitamin E and the risk of prostate cancer: the selenium and vitamin E cancer prevention trial (SELECT). JAMA. 306:1549–1556. DOI: 10.1016/j.yonc.2012.06.005. PMID: 21990298. PMCID: PMC4169010.
51. O'Dwyer PJ, Hamilton TC, Young RC, et al. 1992; Depletion of glutathione in normal and malignant human cells in vivo by buthionine sulfoximine: clinical and biochemical results. J Natl Cancer Inst. 84:264–267. DOI: 10.1093/jnci/84.4.264. PMID: 1734088.
52. Harris IS, Treloar AE, Inoue S, et al. 2015; Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell. 27:211–222. DOI: 10.1016/j.ccell.2014.11.019. PMID: 25620030.
53. Harris IS, Endress JE, Coloff JL, et al. 2019; Deubiquitinases maintain protein homeostasis and survival of cancer cells upon glutathione depletion. Cell Metab. 29:1166–1181.e6. DOI: 10.1016/j.cmet.2019.01.020. PMID: 30799286. PMCID: PMC6506399.
54. Ebbing M, Bønaa KH, Nygård O, et al. 2009; Cancer incidence and mortality after treatment with folic acid and vitamin B12. JAMA. 302:2119–2126. DOI: 10.1001/jama.2009.1622. PMID: 19920236.
55. Deghan Manshadi S, Ishiguro L, Sohn KJ, et al. 2014; Folic acid supplementation promotes mammary tumor progression in a rat model. PLoS One. 9:e84635. DOI: 10.1371/journal.pone.0084635. PMID: 24465421. PMCID: PMC3897399.
56. Yun J, Mullarky E, Lu C, et al. 2015; Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science. 350:1391–1396. DOI: 10.3410/f.725917836.793511573. PMID: 26541605. PMCID: PMC4778961.
57. Xu T, Liu Y, Zhao Z, et al. 2023; Ferroptosis in cancer stem cells. Pathol Res Pract. 245:154492. DOI: 10.1016/j.prp.2023.154492. PMID: 37119732.
58. Tang D, Chen X, Kang R, Kroemer G. 2021; Ferroptosis: molecular mechanisms and health implications. Cell Res. 31:107–125. DOI: 10.1038/s41422-020-00441-1. PMID: 33268902. PMCID: PMC8026611.
59. Kim Y, Ju H, Yoo SY, et al. 2023; Glutathione dynamics is a potential predictive and therapeutic trait for neoadjuvant chemotherapy response in bladder cancer. Cell Rep Med. 4:101224. DOI: 10.1016/j.xcrm.2023.101224. PMID: 37797616. PMCID: PMC10591055.
60. Romero R, Sayin VI, Davidson SM, et al. 2017; Keap1 loss promotes KRAS-driven lung cancer and results in dependence on glutaminolysis. Nat Med. 23:1362–1368. DOI: 10.1038/nm.4407. PMID: 28967920. PMCID: PMC5677540.
61. Biton M, Haber AL, Rogel N, et al. 2018; T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell. 175:1307–1320.e22. DOI: 10.1016/j.cell.2018.10.008. PMID: 30392957. PMCID: PMC6239889.
62. Bayik D, Lathia JD. 2021; Cancer stem cell-immune cell crosstalk in tumour progression. Nat Rev Cancer. 21:526–536. DOI: 10.1038/s41568-021-00366-w. PMID: 34103704. PMCID: PMC8740903.
63. Chang AL, Miska J, Wainwright DA, et al. 2016; CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res. 76:5671–5682. DOI: 10.1158/0008-5472.can-16-0144. PMID: 27530322. PMCID: PMC5050119.
64. You Y, Li Y, Li M, et al. 2018; Ovarian cancer stem cells promote tumour immune privilege and invasion via CCL5 and regulatory T cells. Clin Exp Immunol. 191:60–73. DOI: 10.1111/cei.13044. PMID: 28868628. PMCID: PMC5721255.
65. Ban Y, Mai J, Li X, et al. 2017; Targeting autocrine CCL5-CCR5 axis reprograms immunosuppressive myeloid cells and reinvigorates antitumor immunity. Cancer Res. 77:2857–2868. DOI: 10.1158/0008-5472.CAN-16-2913. PMID: 28416485. PMCID: PMC5484057.
66. Nakano M, Kikushige Y, Miyawaki K, et al. 2019; Dedifferentia-tion process driven by TGF-beta signaling enhances stem cell properties in human colorectal cancer. Oncogene. 38:780–793. DOI: 10.1038/s41388-018-0480-0. PMID: 30181548.
67. Wainwright DA, Balyasnikova IV, Chang AL, et al. 2012; IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res. 18:6110–6121. DOI: 10.1158/1078-0432.ccr-12-2130. PMID: 22932670. PMCID: PMC3500434.
68. Wang D, Fu L, Sun H, Guo L, DuBois RN. 2015; Prostaglandin E2 promotes colorectal cancer stem cell expansion and metastasis in mice. Gastroenterology. 149:1884–1895.e4. DOI: 10.1053/j.gastro.2015.07.064. PMID: 26261008. PMCID: PMC4762503.
69. Facciabene A, Peng X, Hagemann IS, et al. 2011; Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature. 475:226–230. DOI: 10.3410/f.12919956.14210054. PMID: 21753853.
70. Zhang Y, Zoltan M, Riquelme E, et al. 2018; Immune cell production of interleukin 17 induces stem cell features of pancreatic intraepithelial neoplasia cells. Gastroenterology. 155:210–223.e3. DOI: 10.1053/j.gastro.2018.03.041. PMID: 29604293. PMCID: PMC6035075.
71. He W, Wu J, Shi J, et al. 2018; IL22RA1/STAT3 signaling promotes stemness and tumorigenicity in pancreatic cancer. Cancer Res. 78:3293–3305. DOI: 10.1158/0008-5472.CAN-17-3131. PMID: 29572224.
72. Ben-Porath I, Thomson MW, Carey VJ, et al. 2008; An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 40:499–507. DOI: 10.1038/ng.127. PMID: 18443585. PMCID: PMC2912221.
73. Yang S, Wang B, Guan C, et al. 2011; Foxp3IL-17 T cells promote development of cancer-initiating cells in colorectal cancer. J Leukoc Biol. 89:85–91.
74. Tsuchiya H, Shiota G. 2021; Immune evasion by cancer stem cells. Regen Ther. 17:20–33. DOI: 10.1016/j.reth.2021.02.006. PMID: 33778133. PMCID: PMC7966825.
75. Zheng F, Dang J, Zhang H, et al. 2018; Cancer stem cell vaccination with PD-L1 and CTLA-4 blockades enhances the eradication of melanoma stem cells in a mouse tumor model. J Immunother. 41:361–368. DOI: 10.1097/cji.0000000000000242. PMID: 30063587. PMCID: PMC6128768.
76. Chen Y, Li M, Cao J, et al. 2021; CTLA-4 promotes lymphoma progression through tumor stem cell enrichment and immunosuppression. Open Life Sci. 16:909–919. DOI: 10.1515/biol-2021-0094. PMID: 34553071. PMCID: PMC8422981.
77. Deshmukh AP, den Hollander P, Kuburich NA, Vasaikar S, Joseph R, Mani SA. 2022; Enrichment of cancer stem cells in a tumorsphere assay. Methods Mol Biol. 2429:501–507. DOI: 10.1007/978-1-0716-1979-7_34. PMID: 35507184.
78. Case AJ, McGill JL, Tygrett LT, et al. 2011; Elevated mitochondrial superoxide disrupts normal T cell development, impairing adaptive immune responses to an influenza challenge. Free Radic Biol Med. 50:448–458. DOI: 10.1016/j.freeradbiomed.2010.11.025. PMID: 21130157. PMCID: PMC3026081.
79. Tse HM, Thayer TC, Steele C, et al. 2010; NADPH oxidase deficiency regulates Th lineage commitment and modulates autoimmunity. J Immunol. 185:5247–5258. DOI: 10.4049/jimmunol.1001472. PMID: 20881184. PMCID: PMC3190397.
80. Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. 2013; Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal. 19:1539–1605. DOI: 10.1089/ars.2012.4599. PMID: 23397885. PMCID: PMC3797455.
81. Marino SM, Gladyshev VN. 2010; Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J Mol Biol. 404:902–916. DOI: 10.1016/j.jmb.2010.09.027. PMID: 20950627. PMCID: PMC3061813.
82. Gmünder H, Eck HP, Benninghoff B, Roth S, Dröge W. 1990; Macrophages regulate intracellular glutathione levels of lymphocytes. Evidence for an immunoregulatory role of cysteine. Cell Immunol. 129:32–46. DOI: 10.1016/0008-8749(90)90184-s. PMID: 2364441.
83. Angelini G, Gardella S, Ardy M, et al. 2002; Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc Natl Acad Sci U S A. 99:1491–1496. DOI: 10.1073/pnas.022630299. PMID: 11792859. PMCID: PMC122218.
84. Yan Z, Garg SK, Kipnis J, Banerjee R. 2009; Extracellular redox modulation by regulatory T cells. Nat Chem Biol. 5:721–723. DOI: 10.1038/nchembio.212. PMID: 19718041. PMCID: PMC2760945.
85. Yan Z, Garg SK, Banerjee R. 2010; Regulatory T cells interfere with glutathione metabolism in dendritic cells and T cells. J Biol Chem. 285:41525–41532. DOI: 10.1074/jbc.m110.189944. PMID: 21037289. PMCID: PMC3009879.
86. Lee K, Won HY, Bae MA, Hong JH, Hwang ES. 2011; Spontaneous and aging-dependent development of arthritis in NADPH oxidase 2 deficiency through altered differentiation of CD11b+ and Th/Treg cells. Proc Natl Acad Sci U S A. 108:9548–9553.
87. Noel S, Martina MN, Bandapalle S, et al. 2015; T lymphocyte-specific activation of Nrf2 protects from AKI. J Am Soc Nephrol. 26:2989–3000. DOI: 10.1681/ASN.2014100978. PMID: 26293820. PMCID: PMC4657838.
88. Zhang D, Jin W, Wu R, et al. 2019; High glucose intake exacerbates autoimmunity through reactive-oxygen-species-mediated TGF-β cytokine activation. Immunity. 51:671–681.e5. DOI: 10.1016/j.immuni.2019.08.001. PMID: 31451397. PMCID: PMC9811990.
89. Mak TW, Grusdat M, Duncan GS, et al. 2017; Glutathione primes T cell metabolism for inflammation. Immunity. 46:1089–1090. DOI: 10.1016/j.immuni.2017.06.009. PMID: 28423341.
90. Roychoudhuri R, Hirahara K, Mousavi K, et al. 2013; BACH2 represses effector programs to stabilize T(reg)-mediated immune homeostasis. Nature. 498:506–510. DOI: 10.3410/f.718015787.793480628. PMID: 23728300. PMCID: PMC3710737.
91. Yu X, Lao Y, Teng XL, et al. 2018; SENP3 maintains the stability and function of regulatory T cells via BACH2 deSUMOylation. Nat Commun. 9:3157. DOI: 10.1038/s41467-018-05676-6. PMID: 30089837. PMCID: PMC6082899.
92. Yeh ET, Gong L, Kamitani T. 2000; Ubiquitin-like proteins: new wines in new bottles. Gene. 248:1–14. DOI: 10.1016/s0378-1119(00)00139-6. PMID: 10806345.
93. Flotho A, Melchior F. 2013; Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem. 82:357–385. DOI: 10.1146/annurev-biochem-061909-093311. PMID: 23746258.
94. Hang S, Paik D, Yao L, et al. 2019; Bile acid metabolites control TH17 and Treg cell differentiation. Nature. 576:143–148. DOI: 10.1038/s41586-019-1785-z. PMID: 31776512. PMCID: PMC6949019.
95. Alissafi T, Kalafati L, Lazari M, et al. 2020; Mitochondrial oxidative damage underlies regulatory T cell defects in autoi-mmunity. Cell Metab. 32:591–604.e7. DOI: 10.1016/j.cmet.2020.07.001. PMID: 32738205. PMCID: PMC7611060.
96. Heo J, Noh BJ, Lee S, et al. 2020; Phosphorylation of TFCP2L1 by CDK1 is required for stem cell pluripotency and bladder carcinogenesis. EMBO Mol Med. 12:e10880. DOI: 10.15252/emmm.201910880. PMID: 31709755. PMCID: PMC6949511.
97. Heo J, Lee J, Nam YJ, et al. 2022; The CDK1/TFCP2L1/ID2 cascade offers a novel combination therapy strategy in a preclinical model of bladder cancer. Exp Mol Med. 54:801–811. DOI: 10.1038/s12276-022-00786-0. PMID: 35729325. PMCID: PMC9256744.
98. Oh Y, Jung HR, Min S, et al. 2021; Targeting antioxidant enzymes enhances the therapeutic efficacy of the BCL-XL inhibitor ABT-263 in KRAS-mutant colorectal cancers. Can-cer Lett. 497:123–136. DOI: 10.1016/j.canlet.2020.10.018. PMID: 33068701.
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr