1. Albini A, Bruno A, Gallo C, Pajardi G, Noonan DM, Dallaglio K. 2015; Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity. Connect Tissue Res. 56:414–425. DOI:
10.3109/03008207.2015.1066780. PMID:
26291921. PMCID:
PMC4673538.
3. Lapidot T, Sirard C, Vormoor J, et al. 1994; A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 367:645–648. DOI:
10.1038/367645a0. PMID:
7509044.
4. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. 2003; Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 100:3983–3988. DOI:
10.1073/pnas.0530291100. PMID:
12629218. PMCID:
PMC153034.
8. Li C, Jiang P, Wei S, Xu X, Wang J. 2020; Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer. 19:116. DOI:
10.1186/s12943-020-01234-1. PMID:
32680511. PMCID:
PMC7367382.
9. Asadzadeh Z, Mohammadi H, Safarzadeh E, et al. 2017; The paradox of Th17 cell functions in tumor immunity. Cell Immunol. 322:15–25. DOI:
10.1016/j.cellimm.2017.10.015. PMID:
29103586.
10. Bailey SR, Nelson MH, Himes RA, Li Z, Mehrotra S, Paulos CM. 2014; Th17 cells in cancer: the ultimate identity crisis. Front Immunol. 5:276. DOI:
10.3389/fimmu.2014.00276. PMID:
24987392. PMCID:
PMC4060300.
12. Jeong EM, Shin JW, Lim J, et al. 2019; Monitoring glutathione dynamics and heterogeneity in living stem cells. Int J Stem Cells. 12:367–379. DOI:
10.15283/ijsc18151. PMID:
30836726. PMCID:
PMC6657947.
13. Kim J, Gong YX, Jeong EM. 2023; Measuring glutathione regeneration capacity in stem cells. Int J Stem Cells. 16:356–362. DOI:
10.15283/ijsc23047. PMID:
37385637. PMCID:
PMC10465335.
14. Lim J, Heo J, Ju H, et al. 2020; Glutathione dynamics determine the therapeutic efficacy of mesenchymal stem cells for graft-versus-host disease via CREB1-NRF2 pathway. Sci Adv. 6:eaba1334. DOI:
10.1126/sciadv.aba1334. PMID:
32490200. PMCID:
PMC7239701.
15. Jeong EM, Yoon JH, Lim J, et al. 2018; Real-time monitoring of glutathione in living cells reveals that high glutathione levels are required to maintain stem cell function. Stem Cell Reports. 10:600–614. DOI:
10.1016/j.stemcr.2017.12.007. PMID:
29307581. PMCID:
PMC5830891.
18. Jagust P, Alcalá S, Sainz B Jr, Heeschen C, Sancho P. 2020; Glutathione metabolism is essential for self-renewal and chemoresistance of pancreatic cancer stem cells. World J Stem Cells. 12:1410–1428. DOI:
10.4252/wjsc.v12.i11.1410. PMID:
33312407. PMCID:
PMC7705467.
19. Mukha A, Kahya U, Linge A, et al. 2021; GLS-driven glutamine catabolism contributes to prostate cancer radiosensitivity by regulating the redox state, stemness and ATG5-mediated autophagy. Theranostics. 11:7844–7868. DOI:
10.7150/thno.58655. PMID:
34335968. PMCID:
PMC8315064.
20. Polewski MD, Reveron-Thornton RF, Cherryholmes GA, Marinov GK, Aboody KS. 2017; SLC7A11 overexpression in glioblastoma is associated with increased cancer stem cell-like properties. Stem Cells Dev. 26:1236–1246. DOI:
10.1089/scd.2017.0123. PMID:
28610554. PMCID:
PMC5576215.
22. Asai R, Tsuchiya H, Amisaki M, et al. 2019; CD44 standard isoform is involved in maintenance of cancer stem cells of a hepatocellular carcinoma cell line. Cancer Med. 8:773–782. DOI:
10.1002/cam4.1968. PMID:
30636370. PMCID:
PMC6382709.
23. Wang SQ, Chen JJ, Jiang Y, et al. 2023; Targeting GSTP1 as therapeutic strategy against lung adenocarcinoma stemness and resistance to tyrosine kinase inhibitors. Adv Sci (Weinh). 10:e2205262. DOI:
10.1002/advs.202205262. PMID:
36709476. PMCID:
PMC9982593.
24. Amaya ML, Inguva A, Pei S, et al. 2022; The STAT3-MYC axis promotes survival of leukemia stem cells by regulating SLC1A5 and oxidative phosphorylation. Blood. 139:584–596. DOI:
10.1182/blood.2021013201. PMID:
34525179. PMCID:
PMC8796651.
25. Hughes CE, Coody TK, Jeong MY, Berg JA, Winge DR, Hughes AL. 2020; Cysteine toxicity drives age-related mitochondrial decline by altering iron homeostasis. Cell. 180:296–310.e18. DOI:
10.1016/j.cell.2019.12.035. PMID:
31978346. PMCID:
PMC7164368.
26. Ju HQ, Lu YX, Chen DL, et al. 2016; Redox regulation of stem-like cells though the CD44v-xCT axis in colorectal cancer: mechanisms and therapeutic implications. Theran-ostics. 6:1160–1175. DOI:
10.7150/thno.14848. PMID:
27279909. PMCID:
PMC4893643.
27. Ishimoto T, Nagano O, Yae T, et al. 2011; CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell. 19:387–400. DOI:
10.1016/j.ccr.2011.01.038. PMID:
21397861.
28. Ogihara K, Kikuchi E, Okazaki S, et al. 2019; Sulfasalazine could modulate the CD44v9-xCT system and enhance cisplatin-induced cytotoxic effects in metastatic bladder cancer. Cancer Sci. 110:1431–1441. DOI:
10.1111/cas.13960. PMID:
30719824. PMCID:
PMC6447829.
29. Bensaad K, Tsuruta A, Selak MA, et al. 2006; TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 126:107–120. DOI:
10.1016/j.cell.2006.05.036. PMID:
16839880.
30. Cheung EC, Ludwig RL, Vousden KH. 2012; Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc Natl Acad Sci U S A. 109:20491–20496. DOI:
10.1073/pnas.1206530109. PMID:
23185017. PMCID:
PMC3528527.
31. Maddocks OD, Berkers CR, Mason SM, et al. 2013; Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature. 493:542–546. DOI:
10.1038/nature11743. PMID:
23242140. PMCID:
PMC6485472.
33. Piskounova E, Agathocleous M, Murphy MM, et al. 2015; Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 527:186–191. DOI:
10.1038/nature15726. PMID:
26466563. PMCID:
PMC4644103.
34. He C, Danes JM, Hart PC, et al. 2019; SOD2 acetylation on lysine 68 promotes stem cell reprogramming in breast cancer. Proc Natl Acad Sci U S A. 116:23534–23541. DOI:
10.1073/pnas.1902308116. PMID:
31591207. PMCID:
PMC6876149.
35. Yoo HC, Park SJ, Nam M, et al. 2020; A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell Metab. 31:267–283.e12. DOI:
10.1016/j.cmet.2019.11.020. PMID:
31866442.
36. Lu H, Samanta D, Xiang L, et al. 2015; Chemotherapy triggers HIF-1-dependent glutathione synthesis and copper chelation that induces the breast cancer stem cell phenotype. Proc Natl Acad Sci U S A. 112:E4600–E4609. DOI:
10.1073/pnas.1513433112. PMID:
26229077. PMCID:
PMC4547233.
37. Debnath J, Mills KR, Collins NL, Reginato MJ, Muthuswa-my SK, Brugge JS. 2002; The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell. 111:29–40. DOI:
10.1016/s0092-8674(02)01001-2. PMID:
12372298.
39. Schafer ZT, Grassian AR, Song L, et al. 2009; Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature. 461:109–113. DOI:
10.1038/nature08268. PMID:
19693011. PMCID:
PMC2931797.
40. Wiel C, Le Gal K, Ibrahim MX, et al. 2019; BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell. 178:330–345.e22. DOI:
10.1016/j.cell.2019.06.005. PMID:
31257027.
41. Hawk MA, Schafer ZT. 2018; Mechanisms of redox metabolism and cancer cell survival during extracellular matrix detachment. J Biol Chem. 293:7531–7537. DOI:
10.1074/jbc.tm117.000260. PMID:
29339552. PMCID:
PMC5961063.
42. Jiang L, Shestov AA, Swain P, et al. 2016; Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature. 532:255–258. DOI:
10.1038/nature17393. PMID:
27049945. PMCID:
PMC4860952.
45. Nogueira V, Hay N. 2013; Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res. 19:4309–4314. DOI:
10.1158/1078-0432.ccr-12-1424. PMID:
23719265. PMCID:
PMC3933310.
46. Luo M, Shang L, Brooks MD, et al. 2018; Targeting breast cancer stem cell state equilibrium through modulation of redox signaling. Cell Metab. 28:69–86.e6. DOI:
10.1016/j.cmet.2018.06.006. PMID:
29972798. PMCID:
PMC6037414.
47. Fortmann SP, Burda BU, Senger CA, Lin JS, Whitlock EP. 2013; Vitamin and mineral supplements in the primary prevention of cardiovascular disease and cancer: an updated systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med. 159:824–834. DOI:
10.7326/0003-4819-159-12-201312170-00729. PMID:
24217421.
48. Alpha-Tocopherol. Beta Carotene Cancer Prevention Study Group. 1994; The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med. 330:1029–1035. DOI:
10.1056/nejm199404143301501. PMID:
8127329.
49. Goodman GE, Thornquist MD, Balmes J, et al. 2004; The beta-carotene and retinol efficacy trial: incidence of lung cancer and cardiovascular disease mortality during 6-year follow-up after stopping beta-carotene and retinol supplements. J Natl Cancer Inst. 96:1743–1750. DOI:
10.1093/jnci/djh320. PMID:
15572756.
50. Klein EA, Thompson IM Jr, Tangen CM, et al. 2011; Vitamin E and the risk of prostate cancer: the selenium and vitamin E cancer prevention trial (SELECT). JAMA. 306:1549–1556. DOI:
10.1016/j.yonc.2012.06.005. PMID:
21990298. PMCID:
PMC4169010.
51. O'Dwyer PJ, Hamilton TC, Young RC, et al. 1992; Depletion of glutathione in normal and malignant human cells
in vivo by buthionine sulfoximine: clinical and biochemical results. J Natl Cancer Inst. 84:264–267. DOI:
10.1093/jnci/84.4.264. PMID:
1734088.
52. Harris IS, Treloar AE, Inoue S, et al. 2015; Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell. 27:211–222. DOI:
10.1016/j.ccell.2014.11.019. PMID:
25620030.
53. Harris IS, Endress JE, Coloff JL, et al. 2019; Deubiquitinases maintain protein homeostasis and survival of cancer cells upon glutathione depletion. Cell Metab. 29:1166–1181.e6. DOI:
10.1016/j.cmet.2019.01.020. PMID:
30799286. PMCID:
PMC6506399.
54. Ebbing M, Bønaa KH, Nygård O, et al. 2009; Cancer incidence and mortality after treatment with folic acid and vitamin B12. JAMA. 302:2119–2126. DOI:
10.1001/jama.2009.1622. PMID:
19920236.
59. Kim Y, Ju H, Yoo SY, et al. 2023; Glutathione dynamics is a potential predictive and therapeutic trait for neoadjuvant chemotherapy response in bladder cancer. Cell Rep Med. 4:101224. DOI:
10.1016/j.xcrm.2023.101224. PMID:
37797616. PMCID:
PMC10591055.
60. Romero R, Sayin VI, Davidson SM, et al. 2017; Keap1 loss promotes KRAS-driven lung cancer and results in dependence on glutaminolysis. Nat Med. 23:1362–1368. DOI:
10.1038/nm.4407. PMID:
28967920. PMCID:
PMC5677540.
61. Biton M, Haber AL, Rogel N, et al. 2018; T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell. 175:1307–1320.e22. DOI:
10.1016/j.cell.2018.10.008. PMID:
30392957. PMCID:
PMC6239889.
63. Chang AL, Miska J, Wainwright DA, et al. 2016; CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res. 76:5671–5682. DOI:
10.1158/0008-5472.can-16-0144. PMID:
27530322. PMCID:
PMC5050119.
64. You Y, Li Y, Li M, et al. 2018; Ovarian cancer stem cells promote tumour immune privilege and invasion via CCL5 and regulatory T cells. Clin Exp Immunol. 191:60–73. DOI:
10.1111/cei.13044. PMID:
28868628. PMCID:
PMC5721255.
65. Ban Y, Mai J, Li X, et al. 2017; Targeting autocrine CCL5-CCR5 axis reprograms immunosuppressive myeloid cells and reinvigorates antitumor immunity. Cancer Res. 77:2857–2868. DOI:
10.1158/0008-5472.CAN-16-2913. PMID:
28416485. PMCID:
PMC5484057.
66. Nakano M, Kikushige Y, Miyawaki K, et al. 2019; Dedifferentia-tion process driven by TGF-beta signaling enhances stem cell properties in human colorectal cancer. Oncogene. 38:780–793. DOI:
10.1038/s41388-018-0480-0. PMID:
30181548.
67. Wainwright DA, Balyasnikova IV, Chang AL, et al. 2012; IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res. 18:6110–6121. DOI:
10.1158/1078-0432.ccr-12-2130. PMID:
22932670. PMCID:
PMC3500434.
68. Wang D, Fu L, Sun H, Guo L, DuBois RN. 2015; Prostaglandin E2 promotes colorectal cancer stem cell expansion and metastasis in mice. Gastroenterology. 149:1884–1895.e4. DOI:
10.1053/j.gastro.2015.07.064. PMID:
26261008. PMCID:
PMC4762503.
69. Facciabene A, Peng X, Hagemann IS, et al. 2011; Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature. 475:226–230. DOI:
10.3410/f.12919956.14210054. PMID:
21753853.
70. Zhang Y, Zoltan M, Riquelme E, et al. 2018; Immune cell production of interleukin 17 induces stem cell features of pancreatic intraepithelial neoplasia cells. Gastroenterology. 155:210–223.e3. DOI:
10.1053/j.gastro.2018.03.041. PMID:
29604293. PMCID:
PMC6035075.
71. He W, Wu J, Shi J, et al. 2018; IL22RA1/STAT3 signaling promotes stemness and tumorigenicity in pancreatic cancer. Cancer Res. 78:3293–3305. DOI:
10.1158/0008-5472.CAN-17-3131. PMID:
29572224.
72. Ben-Porath I, Thomson MW, Carey VJ, et al. 2008; An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 40:499–507. DOI:
10.1038/ng.127. PMID:
18443585. PMCID:
PMC2912221.
73. Yang S, Wang B, Guan C, et al. 2011; Foxp3+IL-17+ T cells promote development of cancer-initiating cells in colorectal cancer. J Leukoc Biol. 89:85–91.
75. Zheng F, Dang J, Zhang H, et al. 2018; Cancer stem cell vaccination with PD-L1 and CTLA-4 blockades enhances the eradication of melanoma stem cells in a mouse tumor model. J Immunother. 41:361–368. DOI:
10.1097/cji.0000000000000242. PMID:
30063587. PMCID:
PMC6128768.
76. Chen Y, Li M, Cao J, et al. 2021; CTLA-4 promotes lymphoma progression through tumor stem cell enrichment and immunosuppression. Open Life Sci. 16:909–919. DOI:
10.1515/biol-2021-0094. PMID:
34553071. PMCID:
PMC8422981.
77. Deshmukh AP, den Hollander P, Kuburich NA, Vasaikar S, Joseph R, Mani SA. 2022; Enrichment of cancer stem cells in a tumorsphere assay. Methods Mol Biol. 2429:501–507. DOI:
10.1007/978-1-0716-1979-7_34. PMID:
35507184.
78. Case AJ, McGill JL, Tygrett LT, et al. 2011; Elevated mitochondrial superoxide disrupts normal T cell development, impairing adaptive immune responses to an influenza challenge. Free Radic Biol Med. 50:448–458. DOI:
10.1016/j.freeradbiomed.2010.11.025. PMID:
21130157. PMCID:
PMC3026081.
79. Tse HM, Thayer TC, Steele C, et al. 2010; NADPH oxidase deficiency regulates Th lineage commitment and modulates autoimmunity. J Immunol. 185:5247–5258. DOI:
10.4049/jimmunol.1001472. PMID:
20881184. PMCID:
PMC3190397.
80. Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. 2013; Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal. 19:1539–1605. DOI:
10.1089/ars.2012.4599. PMID:
23397885. PMCID:
PMC3797455.
81. Marino SM, Gladyshev VN. 2010; Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J Mol Biol. 404:902–916. DOI:
10.1016/j.jmb.2010.09.027. PMID:
20950627. PMCID:
PMC3061813.
82. Gmünder H, Eck HP, Benninghoff B, Roth S, Dröge W. 1990; Macrophages regulate intracellular glutathione levels of lymphocytes. Evidence for an immunoregulatory role of cysteine. Cell Immunol. 129:32–46. DOI:
10.1016/0008-8749(90)90184-s. PMID:
2364441.
83. Angelini G, Gardella S, Ardy M, et al. 2002; Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc Natl Acad Sci U S A. 99:1491–1496. DOI:
10.1073/pnas.022630299. PMID:
11792859. PMCID:
PMC122218.
85. Yan Z, Garg SK, Banerjee R. 2010; Regulatory T cells interfere with glutathione metabolism in dendritic cells and T cells. J Biol Chem. 285:41525–41532. DOI:
10.1074/jbc.m110.189944. PMID:
21037289. PMCID:
PMC3009879.
86. Lee K, Won HY, Bae MA, Hong JH, Hwang ES. 2011; Spontaneous and aging-dependent development of arthritis in NADPH oxidase 2 deficiency through altered differentiation of CD11b+ and Th/Treg cells. Proc Natl Acad Sci U S A. 108:9548–9553.
87. Noel S, Martina MN, Bandapalle S, et al. 2015; T lymphocyte-specific activation of Nrf2 protects from AKI. J Am Soc Nephrol. 26:2989–3000. DOI:
10.1681/ASN.2014100978. PMID:
26293820. PMCID:
PMC4657838.
88. Zhang D, Jin W, Wu R, et al. 2019; High glucose intake exacerbates autoimmunity through reactive-oxygen-species-mediated TGF-β cytokine activation. Immunity. 51:671–681.e5. DOI:
10.1016/j.immuni.2019.08.001. PMID:
31451397. PMCID:
PMC9811990.
95. Alissafi T, Kalafati L, Lazari M, et al. 2020; Mitochondrial oxidative damage underlies regulatory T cell defects in autoi-mmunity. Cell Metab. 32:591–604.e7. DOI:
10.1016/j.cmet.2020.07.001. PMID:
32738205. PMCID:
PMC7611060.
96. Heo J, Noh BJ, Lee S, et al. 2020; Phosphorylation of TFCP2L1 by CDK1 is required for stem cell pluripotency and bladder carcinogenesis. EMBO Mol Med. 12:e10880. DOI:
10.15252/emmm.201910880. PMID:
31709755. PMCID:
PMC6949511.
97. Heo J, Lee J, Nam YJ, et al. 2022; The CDK1/TFCP2L1/ID2 cascade offers a novel combination therapy strategy in a preclinical model of bladder cancer. Exp Mol Med. 54:801–811. DOI:
10.1038/s12276-022-00786-0. PMID:
35729325. PMCID:
PMC9256744.
98. Oh Y, Jung HR, Min S, et al. 2021; Targeting antioxidant enzymes enhances the therapeutic efficacy of the BCL-X
L inhibitor ABT-263 in KRAS-mutant colorectal cancers. Can-cer Lett. 497:123–136. DOI:
10.1016/j.canlet.2020.10.018. PMID:
33068701.