Ann Lab Med.  2024 Jul;44(4):335-342. 10.3343/alm.2023.0301.

NUP214 Rearrangements in Leukemia Patients: A Case Series From a Single Institution

Affiliations
  • 1Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
  • 2Department of Laboratory Medicine, Severance Hospital, Seoul, Korea

Abstract

Background
The three best-known NUP214 rearrangements found in leukemia (SET:: NUP214, NUP214::ABL1, and DEK::NUP214) are associated with treatment resistance and poor prognosis. Mouse experiments have shown that NUP214 rearrangements alone are insufficient for leukemogenesis; therefore, the identification of concurrent mutations is important for accurate assessment and tailored patient management. Here, we characterized the demographic characteristics and concurrent mutations in patients harboring NUP214 rearrangements.
Methods
To identify patients with NUP214 rearrangements, RNA-sequencing results of diagnostic bone marrow aspirates were retrospectively studied. Concurrent targeted nextgeneration sequencing results, patient demographics, karyotypes, and flow cytometry information were also reviewed.
Results
In total, 11 patients harboring NUP214 rearrangements were identified, among whom four had SET::NUP214, three had DEK::NUP214, and four had NUP214::ABL1. All DEK::NUP214-positive patients were diagnosed as having AML. In patients carrying SET::NUP214 and NUP214::ABL1, T-lymphoblastic leukemia was the most common diagnosis (50%, 4/8). Concurrent gene mutations were found in all cases. PFH6 mutations were the most common (45.5%, 5/11), followed by WT1 (27.3%, 3/11), NOTCH1 (27.3%, 3/11), FLT3-internal tandem duplication (27.3%, 3/11), NRAS (18.2%, 2/11), and EZH2 (18.2%, 2/11) mutations. Two patients represented the second and third reported cases of NUP214::ABL1-positive AML.
Conclusions
We examined the characteristics and concurrent test results, including gene mutations, of 11 leukemia patients with NUP214 rearrangement. We hope that the elucidation of the context in which they occurred will aid future research on tailored monitoring and treatment.

Keyword

Gene rearrangement; High-throughput nucleotide sequencing; Leukemia; NUP214; Oncogene fusion

Reference

References

1. Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ. 2002; Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol. 158:915–27. DOI: 10.1083/jcb.200206106. PMID: 12196509. PMCID: PMC2173148.
Article
2. van Deursen J, Boer J, Kasper L, Grosveld G. 1996; G2 arrest and impaired nucleocytoplasmic transport in mouse embryos lacking the proto-oncogene CAN/Nup214. EMBO J. 15:5574–83. DOI: 10.1002/j.1460-2075.1996.tb00942.x. PMID: 8896451. PMCID: PMC452302.
Article
3. Bui KH, von Appen A, DiGuilio AL, Ori A, Sparks L, Mackmull MT, et al. 2013; Integrated structural analysis of the human nuclear pore complex scaffold. Cell. 155:1233–43. DOI: 10.1016/j.cell.2013.10.055. PMID: 24315095.
Article
4. Schmitt C, von Kobbe C, Bachi A, Panté N, Rodrigues JP, Boscheron C, et al. 1999; Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J. 18:4332–47. DOI: 10.1093/emboj/18.15.4332. PMID: 10428971. PMCID: PMC1171509.
Article
5. Napetschnig J, Blobel G, Hoelz A. 2007; Crystal structure of the N-terminal domain of the human protooncogene Nup214/CAN. Proc Natl Acad Sci U S A. 104:1783–8. DOI: 10.1073/pnas.0610828104. PMID: 17264208. PMCID: PMC1794303.
Article
6. Lim RY, Huang NP, Köser J, Deng J, Lau KH, Schwarz-Herion K, et al. 2006; Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. Proc Natl Acad Sci U S A. 103:9512–7. DOI: 10.1073/pnas.0603521103. PMID: 16769882. PMCID: PMC1480438.
Article
7. Fukuda M, Asano S, Nakamura T, Adachi M, Yoshida M, Yanagida M, et al. 1997; CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature. 390:308–11. DOI: 10.1038/36894. PMID: 9384386.
Article
8. Gorello P, La Starza R, Varasano E, Chiaretti S, Elia L, Pierini V, et al. 2010; Combined interphase fluorescence in situ hybridization elucidates the genetic heterogeneity of T-cell acute lymphoblastic leukemia in adults. Haematologica. 95:79–86. DOI: 10.3324/haematol.2009.010413. PMID: 20065082. PMCID: PMC2805748.
Article
9. Rosati R, La Starza R, Barba G, Gorello P, Pierini V, Matteucci C, et al. 2007; Cryptic chromosome 9q34 deletion generates TAF-Ialpha/CAN and TAF-Ibeta/CAN fusion transcripts in acute myeloid leukemia. Haematologica. 92:232–5. DOI: 10.3324/haematol.10538. PMID: 17296573.
Article
10. Van Vlierberghe P, van Grotel M, Tchinda J, Lee C, Beverloo HB, van der Spek PJ, et al. 2008; The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia. Blood. 111:4668–80. DOI: 10.1182/blood-2007-09-111872. PMID: 18299449. PMCID: PMC2343598.
11. von Lindern M, Breems D, van Baal S, Adriaansen H, Grosveld G. 1992; Characterization of the translocation breakpoint sequences of two DEK-CAN fusion genes present in t(6;9) acute myeloid leukemia and a SET-CAN fusion gene found in a case of acute undifferentiated leukemia. Genes Chromosomes Cancer. 5:227–34. DOI: 10.1002/gcc.2870050309. PMID: 1384675.
12. Graux C, Stevens-Kroef M, Lafage M, Dastugue N, Harrison CJ, Mugneret F, et al. 2009; Heterogeneous patterns of amplification of the NUP214-ABL1 fusion gene in T-cell acute lymphoblastic leukemia. Leukemia. 23:125–33. DOI: 10.1038/leu.2008.278. PMID: 18923437.
Article
13. Wang HP, He JJ, Zhu QY, Wang L, Li JH, Huang JS, et al. 2021; Case report: the first report of NUP214-ABL1 fusion gene in acute myeloid leukemia patient detected by next-generation sequencing. Front Oncol. 11:706798. DOI: 10.3389/fonc.2021.706798. PMID: 34307175. PMCID: PMC8295748. PMID: 1ad2c985090e430da94d0023801ceca6.
Article
14. Slovak ML, Gundacker H, Bloomfield CD, Dewald G, Appelbaum FR, Larson RA, et al. 2006; A retrospective study of 69 patients with t(6;9)(p23;q34) AML emphasizes the need for a prospective, multicenter initiative for rare 'poor prognosis' myeloid malignancies. Leukemia. 20:1295–7. DOI: 10.1038/sj.leu.2404233. PMID: 16628187.
Article
15. Mendes A, Fahrenkrog B. 2019; NUP124 in leukemia: it's more than transport. Cells. 8:76. DOI: 10.3390/cells8010076. PMID: 30669574. PMCID: PMC6356203. PMID: 0ffcb8ea43eb4827aeb2bb9d8ca78796.
16. Terlecki-Zaniewicz S, Humer T, Eder T, Schmoellerl J, Heyes E, Manhart G, et al. 2021; Biomolecular condensation of NUP98 fusion proteins drives leukemogenic gene expression. Nat Struct Mol Biol. 28:190–201. DOI: 10.1038/s41594-020-00550-w. PMID: 33479542. PMCID: PMC7116736.
Article
17. De Keersmaecker K, Rocnik JL, Bernad R, Lee BH, Leeman D, Gielen O, et al. 2008; Kinase activation and transformation by NUP214-ABL1 is dependent on the context of the nuclear pore. Mol Cell. 31:134–42. DOI: 10.1016/j.molcel.2008.05.005. PMID: 18614052.
Article
18. Wang J, Zhan QR, Lu XX, Zhang LJ, Wang XX, Zhang HY. 2022; The characteristics and prognostic significance of the SET-CAN/NUP214 fusion gene in hematological malignancies: a systematic review. Medicine (Baltimore). 101:e29294. DOI: 10.1097/MD.0000000000029294. PMID: 35905214. PMCID: PMC9333549.
Article
19. Thiede C, Steudel C, Mohr B, Schaich M, Schäkel U, Platzbecker U, et al. 2002; Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 99:4326–35. DOI: 10.1182/blood.V99.12.4326. PMID: 12036858.
Article
20. Ozbek U, Kandilci A, van Baal S, Bonten J, Boyd K, Franken P, et al. 2007; SET-CAN, the product of the t(9;9) in acute undifferentiated leukemia, causes expansion of early hematopoietic progenitors and hyperproliferation of stomach mucosa in transgenic mice. Am J Pathol. 171:654–66. DOI: 10.2353/ajpath.2007.060934. PMID: 17569777. PMCID: PMC1934515.
Article
21. Saito S, Nouno K, Shimizu R, Yamamoto M, Nagata K. 2008; Impairment of erythroid and megakaryocytic differentiation by a leukemia-associated and t(9;9)-derived fusion gene product, SET/TAF-Ibeta-CAN/Nup214. J Cell Physiol. 214:322–33. DOI: 10.1002/jcp.21199. PMID: 17620317.
22. Oancea C, Rüster B, Henschler R, Puccetti E, Ruthardt M. 2010; The t(6;9) associated DEK/CAN fusion protein targets a population of long-term repopulating hematopoietic stem cells for leukemogenic transformation. Leukemia. 24:1910–9. DOI: 10.1038/leu.2010.180. PMID: 20827285.
Article
23. Wang Q, Qiu H, Jiang H, Wu L, Dong S, Pan J, et al. 2011; Mutations of PHF6 are associated with mutations of NOTCH1, JAK1 and rearrangement of SET-NUP214 in T-cell acute lymphoblastic leukemia. Haematologica. 96:1808–14. DOI: 10.3324/haematol.2011.043083. PMID: 21880637. PMCID: PMC3232263.
Article
24. Kleppe M, Lahortiga I, El Chaar T, De Keersmaecker K, Mentens N, Graux C, et al. 2010; Deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia. Nat Genet. 42:530–5. DOI: 10.1038/ng.587. PMID: 20473312. PMCID: PMC2957655.
Article
25. Bolger AM, Lohse M, Usadel B, Usadel B. 2014; Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30:2114–20. DOI: 10.1093/bioinformatics/btu170. PMID: 24695404. PMCID: PMC4103590.
Article
26. Kim H, Shim Y, Lee TG, Won D, Choi JR, Shin S, et al. 2023; Copy-number analysis by base-level normalization: an intuitive visualization tool for evaluating copy number variations. Clin Genet. 103:35–44. DOI: 10.1111/cge.14236. PMID: 36152294.
Article
27. Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, et al. 2017; Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the association for molecular pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 19:4–23. DOI: 10.1016/j.jmoldx.2016.10.002. PMID: 27993330. PMCID: PMC5707196.
Article
28. Zhang H, Zhang L, Li Y, Gu H, Wang X. 2020; SET-CAN fusion gene in acute leukemia and myeloid neoplasms: report of three cases and a literature review. Onco Targets Ther. 13:7665–81. DOI: 10.2147/OTT.S258365. PMID: 32821125. PMCID: PMC7423397.
29. Van Vlierberghe P, Patel J, Abdel-Wahab O, Lobry C, Hedvat CV, Balbin M, et al. 2011; PHF6 mutations in adult acute myeloid leukemia. Leukemia. 25:130–4. DOI: 10.1038/leu.2010.247. PMID: 21030981. PMCID: PMC3878659.
30. Li WJ, Cui L, Gao C, Zhao XX, Liu SG, Xing YP, et al. 2011; MRD analysis and treatment outcome in three children with SET-NUP214-positive hematological malignancies. Int J Lab Hematol. 33:e25–7. DOI: 10.1111/j.1751-553X.2011.01343.x. PMID: 21679311.
Article
31. Oyarzo MP, Lin P, Glassman A, Bueso-Ramos CE, Luthra R, Medeiros LJ. 2004; Acute myeloid leukemia with t(6;9)(p23;q34) is associated with dysplasia and a high frequency of flt3 gene mutations. Am J Clin Pathol. 122:348–58. DOI: 10.1309/5DGB59KQA527PD47. PMID: 15362364.
Article
32. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. 2016; Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 374:2209–21. DOI: 10.1056/NEJMoa1516192. PMID: 27276561. PMCID: PMC4979995.
Article
33. Sandén C, Ageberg M, Petersson J, Lennartsson A, Gullberg U. 2013; Forced expression of the DEK-NUP214 fusion protein promotes proliferation dependent on upregulation of mTOR. BMC Cancer. 13:440. DOI: 10.1186/1471-2407-13-440. PMID: 24073922. PMCID: PMC3849736.
Article
34. McWhirter JR, Galasso DL, Wang JY. 1993; A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol. 13:7587–95. DOI: 10.1128/MCB.13.12.7587. PMID: 8246975. PMCID: PMC364830.
Article
35. De Keersmaecker K, Versele M, Cools J, Superti-Furga G, Hantschel O. 2008; Intrinsic differences between the catalytic properties of the oncogenic NUP214-ABL1 and BCR-ABL1 fusion protein kinases. Leukemia. 22:2208–16. DOI: 10.1038/leu.2008.242. PMID: 18784740.
Article
36. Kim H, Kim IS, Kim H. 2023; Emergence of BCR-ABL1 (p190) in acute myeloid leukemia post-gilteritinib therapy. Ann Lab Med. 43:386–8. DOI: 10.3343/alm.2023.43.4.386. PMID: 36843408. PMCID: PMC9989528.
Article
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr