Int J Stem Cells.  2024 May;17(2):120-129. 10.15283/ijsc24044.

Guidelines for Manufacturing and Application of Organoids: Liver

Affiliations
  • 1Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
  • 2Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
  • 3Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
  • 4Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Korea
  • 5Organoid Standards Initiative
  • 6Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon, Korea
  • 7CellArtgen Inc., Seoul, Korea
  • 8Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Korea
  • 9Department of Biophysics, Sungkyunkwan University, Suwon, Korea
  • 10Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
  • 11Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Korea

Abstract

Recent amendments to regulatory frameworks have placed a greater emphasis on the utilization of in vitro testing platforms for preclinical drug evaluations and toxicity assessments. This requires advanced tissue models capable of accurately replicating liver functions for drug efficacy and toxicity predictions. Liver organoids, derived from human cell sources, offer promise as a reliable platform for drug evaluation. However, there is a lack of standardized quality evaluation methods, which hinders their regulatory acceptance. This paper proposes comprehensive quality standards tailored for liver organoids, addressing cell source validation, organoid generation, and functional assessment. These guidelines aim to enhance reproducibility and accuracy in toxicity testing, thereby accelerating the adoption of organoids as a reliable alternative or complementary tool to animal testing in drug development. The quality standards include criteria for size, cellular composition, gene expression, and functional assays, thus ensuring a robust hepatotoxicity testing platform.

Keyword

Liver organoids; Quality standards; In vitro testing; Hepatotoxicity

Figure

  • Fig. 1 A schematic diagram of liver organoid generation, quality assessment, and applications. To unlock the potential of liver organoids for diverse biomedical applications, it is essential to standardize the processes for generating organoids and assess their quality in terms of liver-like phenotypes and functionality. hASCs: human adult stem cells, hPSCs: human pluripotent stem cells, iPSCs: induced pluripotent stem cell, ESCs: embryonic stem cells, DE: definitive endoderm, HE: hepatic endoderm, ECM: extracellular matrix, ALB: albumin, AAT: α1-antitrypsin.

  • Fig. 2 Representative morphologies of liver organoids derived from (A) human adult stem cells (hASCs) and (B) human pluripotent stem cells (hPSCs). (A) Micrograph of the hASC-derived liver organoids present a spherical morphology. (B) hPSC-derived liver organoids under growth conditions display a spherical feature (left), while their morphologies undergo transformation during differentiation conditions (right). Scale bars=500 μm.


Cited by  1 articles

Standards for Organoids
Sun-Ju Ahn
Int J Stem Cells. 2024;17(2):99-101.    doi: 10.15283/ijsc24043.


Reference

References

1. Han JJ. 2023; FDA Modernization Act 2.0 allows for alternatives to animal testing. Artif Organs. 47:449–450. DOI: 10.1111/aor.14503. PMID: 36762462.
2. Berggren E, Worth AP. 2023; Towards a future regulatory framework for chemicals in the European Union - Chemicals 2.0. Regul Toxicol Pharmacol. 142:105431. DOI: 10.1016/j.yrtph.2023.105431. PMID: 37315707. PMCID: PMC10390824.
Article
3. Olson H, Betton G, Robinson D, et al. 2000; Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol. 32:56–67. DOI: 10.1006/rtph.2000.1399. PMID: 11029269.
Article
4. Baran SW, Brown PC, Baudy AR, et al. 2022; Perspectives on the evaluation and adoption of complex in vitro models in drug development: workshop with the FDA and the pharmaceutical industry (IQ MPS Affiliate). ALTEX. 39:297–314. DOI: 10.14573/altex.2112203. PMID: 35064273.
5. Moon HR, Surianarayanan N, Singh T, Han B. 2023; Microphysiological systems as reliable drug discovery and evaluation tools: evolution from innovation to maturity. Biomicrofluidics. 17:061504. DOI: 10.1063/5.0179444. PMID: 38162229.
Article
6. Zhao Z, Chen X, Dowbaj AM, et al. 2022; Organoids. Nat Rev Methods Primers. 2:94. DOI: 10.1038/s43586-022-00174-y. PMID: 37325195. PMCID: PMC10270325.
Article
7. Reuben A, Koch DG, Lee WM. 2010; Drug-induced acute liver failure: results of a U.S. multicenter, prospective study. Hepatology. 52:2065–2076. DOI: 10.1002/hep.23937. PMID: 20949552. PMCID: PMC3992250.
Article
8. Mun SJ, Ryu JS, Lee MO, et al. 2019; Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids. J Hepatol. 71:970–985. DOI: 10.1016/j.jhep.2019.06.030. PMID: 31299272.
Article
9. Osonoi S, Takebe T. 2024; Organoid-guided precision hepatology for metabolic liver disease. J Hepatol. 80:805–821. DOI: 10.1016/j.jhep.2024.01.002. PMID: 38237864.
Article
10. Zhang CJ, Meyer SR, O'Meara MJ, et al. 2023; A human liver organoid screening platform for DILI risk prediction. J Hepatol. 78:998–1006. DOI: 10.1016/j.jhep.2023.01.019. PMID: 36738840.
Article
11. Brooks A, Liang X, Zhang Y, et al. 2021; Liver organoid as a 3D in vitro model for drug validation and toxicity assessment. Pharmacol Res. 169:105608. DOI: 10.1016/j.phrs.2021.105608. PMID: 33852961.
12. Kim H, Im I, Jeon JS, et al. 2022; Development of human pluripotent stem cell-derived hepatic organoids as an alternative model for drug safety assessment. Biomaterials. 286:121575. DOI: 10.1016/j.biomaterials.2022.121575. PMID: 35598335.
Article
13. Takebe T, Sekine K, Enomura M, et al. 2013; Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 499:481–484. DOI: 10.1038/nature12271. PMID: 23823721.
Article
14. Shinozawa T, Kimura M, Cai Y, et al. 2021; High-fidelity drug-induced liver injury screen using human pluripotent stem cell-derived organoids. Gastroenterology. 160:831–846.e10. DOI: 10.1053/j.gastro.2020.10.002. PMID: 33039464. PMCID: PMC7878295.
Article
15. Marsee A, Roos FJM, Verstegen MMA, et al. 2021; Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell. 28:816–832. DOI: 10.1016/j.stem.2021.04.005. PMID: 33961769.
Article
16. Huch M, Gehart H, van Boxtel R, et al. 2015; Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell. 160:299–312. DOI: 10.1016/j.cell.2014.11.050. PMID: 25533785. PMCID: PMC4313365.
Article
17. Kim HJ, Kim G, Chi KY, Kim JH. 2023; In vitro generation of luminal vasculature in liver organoids: from basic vascular biology to vascularized hepatic organoids. Int J Stem Cells. 16:1–15. DOI: 10.15283/ijsc22154. PMID: 36310029. PMCID: PMC9978835.
Article
18. Guan Y, Enejder A, Wang M, et al. 2021; A human multi-lineage hepatic organoid model for liver fibrosis. Nat Commun. 12:6138. DOI: 10.1038/s41467-021-26410-9. PMID: 34686668. PMCID: PMC8536785.
Article
19. Jensen KB, Little MH. 2023; Organoids are not organs: sources of variation and misinformation in organoid biology. Stem Cell Reports. 18:1255–1270. DOI: 10.1016/j.stemcr.2023.05.009. PMID: 37315519. PMCID: PMC10277837.
Article
20. Harrison SP, Siller R, Tanaka Y, et al. 2023; Scalable production of tissue-like vascularized liver organoids from human PSCs. Exp Mol Med. 55:2005–2024. DOI: 10.1038/s12276-023-01074-1. PMID: 37653039. PMCID: PMC10545717.
Article
21. Salas-Silva S, Kim Y, Kim TH, et al. 2023; Human chemically-derived hepatic progenitors (hCdHs) as a source of liver organoid generation: application in regenerative medicine, disease modeling, and toxicology testing. Biomaterials. 303:122360. DOI: 10.1016/j.biomaterials.2023.122360. PMID: 38465578.
Article
22. Takahashi K, Tanabe K, Ohnuki M, et al. 2007; Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131:861–872. DOI: 10.1016/j.cell.2007.11.019. PMID: 18035408.
Article
23. Kim JH, Mun SJ, Kim JH, Son MJ, Kim SY. 2023; Integrative analysis of single-cell RNA-seq and ATAC-seq reveals heterogeneity of induced pluripotent stem cell-derived hepatic organoids. iScience. 26:107675. DOI: 10.1016/j.isci.2023.107675. PMID: 37680467. PMCID: PMC10481365.
Article
24. Ouchi R, Togo S, Kimura M, et al. 2019; Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids. Cell Metab. 30:374–384.e6. DOI: 10.1016/j.cmet.2019.05.007. PMID: 31155493. PMCID: PMC6687537.
Article
25. Lee J, Gil D, Park H, et al. 2023; A multicellular liver organoid model for investigating hepatitis C virus infection and nonalcoholic fatty liver disease progression. Hepatology. https://doi.org/10.1097/HEP.0000000000000683 [Epub ahead of print]. DOI: 10.1097/HEP.0000000000000683.
Article
26. Pek NMQ, Liu KJ, Nichane M, Ang LT. 2021; Controversies surrounding the origin of hepatocytes in adult livers and the in vitro generation or propagation of hepatocytes. Cell Mol Gastroenterol Hepatol. 11:273–290. DOI: 10.1016/j.jcmgh.2020.09.016. PMID: 32992051. PMCID: PMC7695885.
Article
27. Sohlenius-Sternbeck AK. 2006; Determination of the hepatocellularity number for human, dog, rabbit, rat and mouse livers from protein concentration measurements. Toxicol In Vitro. 20:1582–1586. DOI: 10.1016/j.tiv.2006.06.003. PMID: 16930941.
Article
28. Peng WC, Kraaier LJ, Kluiver TA. 2021; Hepatocyte organoids and cell transplantation: what the future holds. Exp Mol Med. 53:1512–1528. DOI: 10.1038/s12276-021-00579-x. PMID: 34663941. PMCID: PMC8568948.
Article
29. Kim DS, Ryu JW, Son MY, et al. 2017; A liver-specific gene expression panel predicts the differentiation status of in vitro hepatocyte models. Hepatology. 66:1662–1674. DOI: 10.1002/hep.29324. PMID: 28640507. PMCID: PMC5698781.
Article
30. Lee MO, Lee SG, Jung CR, et al. 2021; Development of a quantitative prediction algorithm for target organ-specific similarity of human pluripotent stem cell-derived organoids and cells. Nat Commun. 12:4492. DOI: 10.1038/s41467-021-24746-w. PMID: 34301945. PMCID: PMC8302568.
Article
31. Duran I, Pombo J, Sun B, et al. 2024; Detection of senescence using machine learning algorithms based on nuclear features. Nat Commun. 15:1041. DOI: 10.1038/s41467-024-45421-w. PMID: 38310113. PMCID: PMC10838307.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr